XIAO: Big Power, Small Board

Mastering Arduino and TinyML

GPL-3.0 license

Catalogue

Preface	4
Acknowledgments	4
Introduction	4
About this Book	5
Chapter 1: Introduction to Hardware and Programming	8
1.1 First Arduino program with Seeed Studio XIAO: Blink	9
1.2 Using the Button Switch on the XIAO Expansion Board to Control an LED Light	24
1.3 Transforming XIAO and its Expansion Board into a Morse Code Transmitter	
1.4 Monitor Knob Value Changes with Serial Monitor	
1.5 Controlling LED and Servo with a Knob	47
1.6 Displaying "Hello World" on OLED	56
Chapter 2: Project Practice for Beginners - Introduction to Prototype Design	63
2.1 Introduction to Product Prototype Design	64
2.2 Smart Hygrometer and Thermometer	75
2.3 Surprise Gift Box Based on Light Sensor	88
2.4 Rhythmic Dance with a Triaxial Accelerometer	96
Chapter 3: Intermediate Project Practice - Complex Projects	107
3.1 Smart Remote Control Door	108
3.2 Smart Watch	116
3.3 Air Piano	125
3.4 Implementing Wi-Fi Connection and Applications with XIAO ESP32C3	133
3.5 Telemetry and Commands using the MQTT protocol with XIAO ESP32C3	150
Chapter 4: Project Practice Advanced - TinyML Applications	168
4.1 Understanding TinyML and Edge Impulse Studio	169
4.2 Anomaly Detection & Motion Classification	178
4.3 Sound Classification (KWS)	209
4.4 Image Classification	229
4.5 Object Detection	257
4.6 To learn more	277
Chapter 5: Creative Experiments	278
5.1 Creative and useful XIAO projects	279

Preface

From the expansive boards of the past, Arduino has come a long way and entered the Seeed Studio XIAO series: thumb-sized yet power-packed, opening a vast horizon for innovation. "XIAO: Big Power, Small Board" dives deep into these capabilities, guiding readers from the basics of Arduino to intricate miniaturized projects. Whether readers want to illuminate an LED or delve into Embedded Machine Learning (TinyML) with XIAO boards and Edge Impulse Studio, this book covers them. Need for prior knowledge? No worries! This book takes a hands-on, project-based approach, ensuring readers grasp the concepts while implementing them. By the end, they will be adept with XIAO and inspired by many user-created projects showcasing the endless possibilities this small board offers.

Acknowledgments

We want to express our sincere gratitude to Jiamou Yang, Yanming Wen, Mengdu Li, Chunchun Tian, Haixu Liu, Tianrui Wang, and Jianjing Huang for their invaluable technical support and manuscript revisions. This book would not have been possible without their contributions.

We extend our deepest gratitude to the entire TinyML4D Academic Network, comprised of distinguished professors, researchers, and professionals. Notable contributions from Marco Zennaro, Brian Plancher, José Alberto Ferreira, Jesus Lopez, Diego Mendez, Shawn Hymel, Dan Situnayake, Pete Warden, and Laurence Moroney have been instrumental in advancing our understanding of Embedded Machine Learning (TinyML).

Special commendation is reserved for Professor Vijay Janapa Reddi of Harvard University. His steadfast belief in the transformative potential of open-source communities, coupled with his invaluable guidance and teachings, has served as a beacon for our efforts from the very beginning.

Acknowledging these individuals, we pay tribute to the collective wisdom and dedication that have enriched this field and our work.

Illustrative images on the e-book and chapter's covers generated by OpenAI's DALL-E via ChatGPT

Introduction

From the expansive boards of the past, Arduino has come a long way and entered the Seeed Studio XIAO series: thumb-sized yet power-packed, opening a vast horizon for innovation. "XIAO: Big Power, Small Board" dives deep into these capabilities, guiding readers from the basics of Arduino to intricate miniaturized projects. Whether readers want to illuminate an LED or delve into Embedded Machine Learning (TinyML) with XIAO boards and Edge Impulse Studio, this book covers them. Need for prior knowledge? No worries! This book takes a hands-on, project-based approach, ensuring readers grasp the concepts while implementing them. By the end, they will be adept with XIAO and inspired by many user-created projects showcasing the endless possibilities this small board offers.

About this Book

Audience

The primary audience for "XIAO: Big Power, Small Board" encompasses hobbyists, students, educators, and professionals in electronics and machine learning who want to explore and maximize the potential of compact hardware platforms. Typically, these readers might hold positions as electronics enthusiasts, DIY project creators, electronics educators, or even junior embedded system developers. As they advance in their careers, they might be eyeing roles such as electronics design engineers, IoT developers, or machine learning hardware integrators.

Our audience possesses a basic understanding of electronics concepts but may have yet to delve deep into Arduino programming or compact hardware design. They likely have encountered standard beginner books on Arduino or general electronics but might have yet to venture into specialized hardware or TinyML. As for skills, they have some hands-on experience with basic electronics or programming but haven't mastered the intricacies of TinyML or advanced microcontroller functionalities.

What readers will learn

By the end of this book, the reader will understand:

- The fundamentals of open-source hardware, focusing on the capabilities of the Seeed Studio XIAO series.
- How to transition from basic to advanced electronic projects, starting with simple LED controls and advancing to complex applications like telemetry and voice keyword detection.
- The concepts behind prototype design and its practical implications in product development.
- The intricacies of integrating various modules like the infrared receiver, ultrasonic distance sensor, and RTC clock with the XIAO platform.
- The significance and application of Tiny Machine Learning (TinyML), emphasizing its transformative power in hardware like the XIAO nRF52840 Sense and ESP32S3 Sense.
- Techniques to utilize advanced tools such as Edge Impulse Studio for real-world applications like anomaly and object detection and video or sound classification.

The reader will be able to:

- Set up, program, and troubleshoot projects across all XIAO series boards, advancing from basic hardware interactions to intricate project designs.
- Convert abstract ideas into tangible electronic product prototypes, leveraging the insights from the course.
- Design and implement intermediate-level projects such as a Smart Watch and Air Piano using specialized sensors and modules.
- Harness the power of Wi-Fi and MQTT protocols with XIAO ESP32C3 for cloud communications and data exchange.
- Deploy TinyML on different XIAO boards, executing tasks like image, motion, and sound classification besides anomaly and object detection.
- Innovate and extend project ideas, drawing inspiration from a curated collection of XIAO projects and adapting them for custom needs.

Software dependencies

Arduino IDE:

Major updates or changes to the Arduino IDE might affect content related to Arduino development and programming in the book.

Seeed Studio XIAO Libraries:

Updates to libraries specific to the XIAO series can influence the projects or example codes provided.

Edge Impulse Studio:

Significant updates or feature changes on this platform would necessitate adjustments in the TinyML chapters.

MQTT Libraries/Protocols:

Any changes related to MQTT libraries or the protocol itself could influence the content of telemetry and commands.

ESP32 Libraries:

Updates to libraries used by the XIAO ESP32C3 and ESP32S3 board may impact associated projects or examples.

Book outline

Chapter 1: Introduction to Hardware and Programming

In this chapter, readers start with basic programming on XIAO using Arduino IDE. Through simple example programs, they will learn to control LED lights, buttons, buzzers, and other electronic components, mastering core programming concepts like digital I/O, analog I/O, tone generation, and mapping values. By manually typing out code examples line-by-line, they will develop strong coding habits and grasp programming syntax.

Chapter 2: Project Practice for Beginners - Introduction to Prototype Design

In this chapter, readers will learn the basics of designing prototypes with XIAO through beginner-friendly projects. They will start from an idea and quickly create a verification prototype, focusing more on the practical application of code rather than line-by-line analysis. By leveraging Arduino libraries, community resources, and example programs, they will learn how to find and adapt code snippets to achieve desired effects efficiently. Furthermore, they will explore how to design the physical appearance of prototypes by creatively combining electronic hardware with everyday items. The key outcomes are grasping a project-based approach and developing skills to build simple interactive prototypes.

Chapter 3: Intermediate Project Practice—Complex Projects

In this chapter, readers will advance their prototyping skills by creating sophisticated IoT projects with XIAO. They will implement features like Wi-Fi connectivity, MQTT telemetry, and remote control commands using the XIAO ESP32C3. Through complex builds like an intelligent remote door, smartwatch, and air piano, you will hone programming techniques for wireless

communication, cloud integration, and embedded control. Optional blueprints will be provided, but readers are encouraged to explore creative enclosure designs with alternative materials. The key outcomes are mastering intermediate IoT prototyping and preparing for advanced tinyML applications.

Chapter 4: Project Practice Advanced - tinyML Application

Among the XIAO series products, the Seeed Studio XIAO nRF52840 Sense has Bluetooth 5.0 wireless connectivity, low power consumption, and comes with onboard 6-axis IMU and PDM microphone sensors. The XIAO ESP32S3 Sense further integrates a camera, digital microphone, and SD card support. Those features make them powerful tools for TinyML (Embedded Machine Learning) projects. TinyML solves problems in a completely different way from traditional programming methods. This chapter will introduce readers to this cutting-edge field by walking through the entire machine-learning workflow from data collection, training, and testing to deployment and inference using the Edge Impulse Studio tool.

Chapter 5: Creative Experiments

Since its launch, the Seeed Studio XIAO series has been widely acclaimed for its compact size, powerful performance, and versatile product range. The maker community has produced a large number of projects created with XIAO. Due to space constraints, we have selected some outstanding projects made with XIAO by our makers. These projects fully demonstrate the powerful functions and wide applications of XIAO. Let us follow the makers' steps, stimulate creativity, and explore the endless possibilities of XIAO. Readers can draw inspiration from these projects, use imagination, and explore new territories with XIAO.

Copyright Statement

This book, "XIAO: Big Power, Small Board," is published under the GNU General Public License version 3.0 (GPL-3.0), ensuring it remains free and open for all to use, modify, and distribute. The GPL-3.0 License is a widely respected and used free software license, guaranteeing users the freedom to run, study, share, and modify the software. The authors, Lei Feng and Marcelo Rovai, along with all contributors, embrace the principles of open knowledge and education, ensuring

that this valuable resource remains accessible to those who seek to advance their skills in Arduino, TinyML, and beyond. By choosing this license, we commit to fostering a community-driven approach to learning and innovation. For more details on the rights and limitations under this license, please refer to the <u>official GPL-3.0 documentation</u>.

Online Version and Community Feedback

To ensure that our readers always have access to the most current and enhanced version of "XIAO: Big Power, Small Board," we have established an online version of the book available at https://mjrovai.github.io/XIAO_Big_Power_Small_Board-ebook/. This platform not only serves as a repository for the latest updates but also as a space for our community to engage, offer feedback, and propose improvements. We highly encourage our readers to visit this site regularly to check for updates, additional resources, and to become part of our growing community of enthusiasts and professionals. Your insights and contributions are invaluable to us, and we look forward to your active participation in enriching this resource.

Chapter 1: Introduction to Hardware and Programming

In this unit, we will enter the world of electronics and programming and explore how to control hardware through code. Starting with the example program, Blink, we will learn how to light up an LED, turn the light on and off through a button, control the sound of a passive buzzer, and so on. In each task, we will master commonly used programming languages, such as digital input/output, analog input/output, tone and map functions, etc., and learn the primary usage of libraries. The programs in this unit are relatively simple. During the learning process, write the program code for each task by hand, develop good habits, and avoid program upload failures due to errors in symbols or unfamiliar rules.

1.1 First Arduino program with Seeed Studio XIAO: Blink

Arduino is a globally popular open-source electronic prototyping platform, including various models of Arduino development boards and the Arduino IDE software platform. Because of its open, convenient, and easy-to-start characteristics, it has become the first choice for many software and hardware beginners.

With it, you can quickly complete project development and implement your ideas. To date, Arduino has introduced various models of controllers and numerous peripheral modules, such as sensors, actuators, expansion boards, etc. These modules can implement various exciting and practical projects when used with Arduino.

The Seeed Studio XIAO series products we are learning about today are development boards derived from Arduino. They belong to the Seeeduino series and are the smallest members of this series.

1.1.1 Arduino IDE Text Editor

We need to program the hardware through the Arduino IDE text editor. If you have not installed the Arduino IDE, go to the download page to install it: <u>Software</u>. The Arduino IDE (Integrated Development Environment) is a programming software designed explicitly for Arduino. Through it, we can write and upload different programs for Arduino hardware. When we open the Arduino IDE software, it will create a new file named Sketch, which we can rename.

For Windows Users

The interface of the Arduino IDE is spotless, and can be divided into four parts: menu bar, toolbar, editing area, and debug window.

- Menu bar: Includes files, edit, sketch, tools, and help, such as new, save, example programs, select serial port, etc.
- 2 Horizontal toolbar: Contains several commonly used function buttons: verify, upload, debug, board selection, serial plotter, and serial monitor selection.
- ³ Vertical toolbar: Contains shortcuts to the project folder, board manager, library manager, debug, and search.
- ⁴ Code editing area: This is where you write program code, just as we usually type text in a Word window. Write the program code in this area.
- ⁵ Serial monitor, output window: On the right side of the horizontal toolbar, you can open or close the serial monitor window.

For MAC Users

Except for the location of the menu bar (at the top), which is slightly different from Windows users, all other tools and experiences are the same.

tion		1			sketch_may15a Arduino IDE 2.0.4		
the	2	-	$\mathbf{\mathbf{S}}$	∂ 🚱	Seeeduino XIAO 🗸	\checkmark	·Q··
htly			Ph	sketch_r	nay15a.ino		a.,
ows				1	<pre>void setup() { // put your setup code here, to run once:</pre>		
ools	3		1	3	}		
the	4-	-	TTR	► 5 6	void loop() {		- 4
				7	// put your main code here, to run repeatedly:	1	
			₽	9	}	1	_
			Q			¥	
				Serial M	pnitor ×	× 0	0 ≡
				Not con	nected. Select a board and a port to connect automatically.	New Line	-
	5			*			
			8				
			¢ inc	dexing: 15/	7 Ln 10, Col 1 Seeeduino XIAO [not o	connected] 🗘	

1.1.2 Adding Seeed Studio XIAO to Arduino IDE

- Attention -

Due to space limitations, all parts of this course's program code and hardware connection are based on Seeed Studio <u>XIAO SAMD21</u>. Most of the code in the book can be applied to all products in the Seeed Studio XIAO series. If there are exceptions, they will be additionally marked or explained for applicable hardware. If not marked, they apply to multiple products.

We must add the Seeed Studio XIAO series products to the Arduino IDE to start our learning journey.

- For Windows users, first, open your Arduino IDE, click "File→Preferences" in the top menu bar, as shown in the figure, and copy the following URL into "Additional Boards Manager URLs."
- For Mac users, first, open your Arduino IDE, click "Arduino IDE→Preferences" in the top menu bar, as shown in the figure, and copy the following URL into "Additional Boards Manager URLs."

- For Seeed Studio XIAO SAMD21, XIAO nRF52840, and XIAO nRF52840 Sense, copy the link address below: <u>https://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json</u>
- For Seeed Studio XIAO RP2040, copy the link address below: <u>https://github.com/</u> <u>earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json</u>
- For Seeed Studio XIAO ESP32C3, XIAO ESP32S3, copy the link address below: <u>https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json</u>

Preferences		\times
	Settings Network	
Sketchbook location:		
/Users/mouseart/Documents/	Arduino BROWSE	
Show files inside Sketches		
Editor font size:	12	
Interface scale:	Automatic 100 %	
Theme:	Light (Arduino)	
Language:	English V (Reload required)	
Show verbose output during	🗹 compile 🗹 upload	
Compiler warnings	None 🗸	
 Verify code after upload Auto save 		
Editor Quick Suggestions		
Additional boards manager UR	Ls: https://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json,h	
	A	
	Ŭ,	
	CANCEL	

If you frequently use multiple different models of XIAO at the same time, you can click on the **P** icon on the right side of the address bar and add all three addresses above to the board manager, as shown in the figure below.

book location:		
Additional Boards Ma	nager URLs	
Enter additional URLs, one	for each row	
https://files.seeedstudio.c https://github.com/earlepl https://raw.githubusercom	om/arduino/package_seeeduino_boards_index hilhower/arduino-pico/releases/download/globa tent.com/espressif/arduino-esp32/gh-pages/pa	:.json al/package_rp2040_index.json ackage_esp32_dev_index.json
Click for a list of unofficial l	board support URLs	CANCEL

Next, click on "Tools \rightarrow Board \rightarrow Board Manager", enter the keyword Seeeduino XIAO in the search bar, find Seeed SAMD Boards in the appeared entries, and click INSTALL.

When the installation starts, you will see an output pop-up window. After the installation is complete, an "INSTALLED" option will appear.

- Attention -

- Enter "RP2040" in the search bar to find the installation package for Seeed XIAO RP2040.
- Enter "XIAO nrf52840" to find two installation packages: Seeed nRF52 Boards (for lowpower projects) and Seeed nRF52 mbed-enabled Boards (for higher-power TinyML projects).
- Enter "ESP32" to find the installation package for ESP32 by Espressif Systems.

Connecting Seeed Studio XIAO to Arduino IDE

Connect XIAO to the computer with a data cable, as shown in the figure below:

Next, click on "Tools → Board", find "Seeeduino XIAO" and select it, as shown in the figure below.

	Seeeduino XXAO may15a.ino vsid setup() { // put your setup co }	Auto Format Archive Sketch Manage Libraries Serial Monitor Serial Plotter WIF1011 / WIFININA Firmware Updater Upload SSL Root Certificates	22 021 020	4	Ø-	
S 6 7 8 9 18 0	<pre>void loop() { // put your main coo }</pre>	Board: "Seeeduino XIAD" Port Get Board Info Debug: "Off" SERCOM4: "USART" USB Stack: "Arduino"		Boards Manager Adstruit SAMD Boards Arduino AVR Boards esp32 Seeed nRF52 Boards Seeed nRF52 mbad-enabled Boards	0 H B > > > >	
		Programmer Burn Bootloader	,	Seeed SAMD Boards	>	Seeedulino Wo Terminal Seeedulino Fento © Seeedulino XIAO Seeedulino Wo IIte MO126 Seeedulino Wo IIte MO126 Seeedulino Cir38WAN Wo LTE Cat.1 Seeedulino Grave UI Wireles (SAMD51)

- Attention -

- If your development board is XIAO nRF52840, please select Seeed XIAO nrf52840.
- If your development board is XIAO nRF52840 Sense, please select Seeed XIAO nrf52840 Sense.
- If your development board is XIAO RP2040, please select Seeed XIAO RP2040.
- If your development board is XIAO ESP32C3, please select XIAO_ESP32C3.
- If your development board is XIAO ESP32S3, please select XIAO_ESP32S3.

Check if the port connection is correct; if not, select it manually.

- The serial port on Windows systems is displayed as "COM+number," as shown in the figure below.
- The serial port name on Mac or Linux systems is generally /dev/tty.usbmodem+number or / dev/cu.usbmodem+number, as shown in the figure below.

Now, we can start programming XIAO through the software.

- Attention -

XIAO ESP32C3 may not be adequately recognized in Arduino IDE 2, and you need to specify the development board and port manually.

When ESP32C3 is plugged into a PC with Arduino IDE 2, it may not be able to match the correct development board automatically. As shown in the figure below, the display is not the XIAO ESP32 development board; you need to specify manually. Select " Other Board & Port..." from the Port drop-down menu. Enter "xiao" in the search bar of the development board, select the XIAO_ESP32C3 development board from the filtered list below, and confirm after selecting the port on the right.

	🛤 sketch_may16a	a Arduino IDE 2.0.4	
	Seeeduino Wio Terminal	•	∿ .©
2 :	Select Other Board and Port		× "
2	Select both a Board and a Port if you want to If you only select a Board you will be able to a	upload a sketch. compile, but not to upload your sketch.	- 1
n i	BOARDS	PORTS	- 1
	xiao Q		- 1
æ		/dev/cu.HECATEGX07 Serial Port	- A.
C	Seeed XIAO nRF52840 Sense	/dev/cu.usbmodem1101 Serial Port	· 4]
	Seeeduino XIAO	/dev/cu.XiaomiBuds4Pro Serial Port	=×
	XIAO_ESP32C3		
	_	□ Snow all ports	_
		CANCEL	
æ			
	Ln 1, Co	I 1 Seeeduino Wio Terminal [not connected	a) 🗘 🗖

Now you can see that the development board and port are in the correct state.

- Reset Seeed Studio XIAO -

Sometimes when the program upload fails, the Seeed Studio XIAO port may disappear, and we need to perform a reset operation. The reset method will be different for different models of XIAO.

Reset of Seeed Studio XIAO SAMD21

- · Connect XIAO SAMD21 to your computer.
- Open "Blink" in the Arduino IDE sample program and click upload.
- While uploading, short circuit the RST pin in the figure once with tweezers or a short wire.
- The reset is completed when the orange LED flashes and lights up.

As shown in the figure below.

Reset of Seeed Studio XIAO PR2040

- Connect Seeed Studio XIAO RP2040 to your computer.
- Press the reset button marked with "R" once, the position is shown in the figure below.

If this does not work, hold down the Boot button marked with "B", connect the board to your computer while holding down the BOOT button, and then release it to enter the bootloader mode.

Reset of Seeed Studio XIAO nRF52840 and Sense version

- Connect Seeed Studio XIAO nRF52840 or Sense version to your computer.
- Press the reset button marked with "RST" once, the position is shown in the figure below.

If this does not work, you can quickly click it twice to enter the bootloader mode.

Reset of Seeed Studio XIAO ESP32C3

- Connect Seeed Studio XIAO ESP32C3 to your computer.
- Press the reset button marked with "R" once, the position is shown in the figure below.

If this does not work, hold down the Boot button marked with "B", connect the board to your computer while holding down the BOOT button, and then release it to enter the bootloader mode.

Reset of Seeed Studio XIAO ESP32S3

Connect Seeed Studio XIAO ESP32S3 to your computer.

• Press the reset button marked with "R" once, the position is shown in the figure below.

If this does not work, hold down the Boot button marked with "B", connect the board to your computer while holding down the BOOT button, and then release it to enter the bootloader mode.

Structure of Arduino Programs

Now that we have the development board, how can we write programs into it to control its functions? That's when the Arduino IDE text editor comes in handy. We've already introduced the interface functions of Arduino IDE in the introduction, it's an important tool for writing and uploading programs. Arduino programs consist of two basic functions:

setup()

This function is called when the program begins. Use it to initialize variables, pin modes, start using libraries, etc. **setup()** runs only once each time the Arduino board is powered on or reset.

loop()

After the program in **setup()** is executed, the program in **loop()** begins to execute. The program in **loop()** runs repeatedly.

		🔤 sketch_may16a Arduino IDE 2.0.4	
	→ 🔛 Se	eeduino Wio Terminal 👻	. ©
	sketch_may16a.	ino	
Ð	2 // 3 4 }	put your setup code here, to run once:	
₩ \$	5 6 void 7 // 8 9 }	<pre>loop() { put your main code here, to run repeatedly:</pre>	
Q	Serial Monitor >	<	⊘ ≣≍
	Not connected.	Select a board and a port to connect automatically. New Line	•

- Knowledge Window -

- The contents after "/* */" and "//" are comments to help you understand and manage code, the comments will not affect the normal operation of the program;
- When writing programs, we need to use "{}" to wrap a set of codes;
- After each line of code, use ";" as an end symbol to tell the Arduino editor that this line of code instruction is over.

Digital Signals and I/O Settings

Simply put, digital signals are signals represented in binary form of 0 and 1. In Arduino, digital signals are represented by high and low levels, high level means digital signal 1, and low level means digital signal 0. Seeed Studio XIAO has 11 digital pins, we can set these pins to perform the function of inputting or outputting digital signals.

In Arduino, you can use functions to set the status and function of pins. Here are the basic steps to set pins through functions:

- 1. First, determine the pin number of the pin you want to control.
- 2. In the Arduino code, use the pinMode() function to set the function of the pin, such as input or output. For example, to set the pin to output mode, you can use the following code:

```
int ledPin = 13; // The pin to be controlled void setup() {
  pinMode(ledPin, OUTPUT); // Set the pin to output mode
}
```

3. Once you have set the pin to output mode, you can use the digitalWrite() function to set the status of the pin, such as setting it to high or low level. For example, to set the pin to high level, you can use the following code:

```
digitalWrite(ledPin, HIGH); // Set the pin to high level
```

4. If you set the pin to input mode, you can use the digitalRead() function to read the status of the pin, such as detecting whether it is high or low level. For example, to read the status of the pin and save it to a variable, you can use the following code:

```
int buttonPin = 2; // The pin to read the status from
int buttonState = 0; // The variable to save the status
void setup() {
    pinMode(buttonPin, INPUT); // Set the pin to input mode
}
void loop() {
    buttonState = digitalRead(buttonPin); // Read the status of the
}
```

By using functions like **pinMode()**, **digitalWrite()**, and **digitalRead()**, you can easily set and control the status and function of pins in Arduino.

1.1.3 Task 1: Run Blink to Make XIAO's LED Flash

Just as "Hello World" is the first section in all programming languages, "Blink" is akin to "Hello World" in Arduino programming. It is the key to our journey in learning Arduino. Arduino provides many example codes to help us get started quickly, and Blink is one of them. We can select "File \rightarrow Examples \rightarrow 01.Basics \rightarrow Blink" in the Arduino window to open the example program Blink.

After opening the example program, you can see the following code, which implements the effect of LED flashing. You can see that the code has orange and green color prompts, which proves that your input is correct. Pay attention to the difference between uppercase and lowercase.

••		🔤 Blink Arduino IDE 2.0.4
\bigcirc	⇒ 🔊	Seeeduino XIAO 👻
P-1	Blink.ino	
	1	/*
	2	Blink
<u>1</u>	3	
	4	Turns an LED on for one second, then off for one second, repeatedly.
D-0	5	
	6	Most Arduinos have an on-board LED you can control. On the UNO, MEGA and ZERO
	7	it is attached to digital pin 13, on MKR1000 on pin 6. LED_BUILTIN is set to
	8	the correct LED pin independent of which board is used.
Ð-	9	If you want to know what pin the on-board LED is connected to on your Arduino
	10	model, check the Technical Specs of your board at:
\bigcirc	11	https://www.arduino.cc/en/Main/Products
\sim	12	and Alex A New 2014
	13	modified 8 May 2014
	14	by Scott Filzgerato
	15	hudilled z Sep zelo
	17	modified 8 Sep 2016
	18	by Colby Newman
	19	
	20	This example code is in the public domain.
	21	
	22	https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink
	23	*/
	24	
	25	<pre>// the setup function runs once when you press reset or power the board</pre>
	26	<pre>void setup() {</pre>
	27	// initialize digital pin LED_BUILTIN as an output.
	28	pinMode(LED_BUILTIN, OUTPUT);
	29	}
	31	// the loop function runs over and over again forever
	32	void loop() {
	33	digitalWrite(LED BUILTIN, HIGH): // turn the LED on (HIGH is the voltage level)
	34	delay(1000); // wait for a second
	35	<pre>digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW</pre>
	36	delay(1000); // wait for a second
8	37	}
		Lin 1, Col 1 Seeeduino XIAO (not connected)

```
Blink
 Turns an LED on for one second, then off for one second, repeated
 Most Arduinos have an on-board LED you can control. On the UNO, MEGA and ZERO
 it is attached to digital pin 13, on MKR1000 on pin 6. LED_BUILTIN is set to
 the correct LED pin independent of which board is used.
 If you want to know what pin the on-board LED is connected to on your Arduino
 model, check the Technical Specs of your board at:
 https://www.arduino.cc/en/Main/Products
 modified 8 May 2014
 by Scott Fitzgerald
 modified 2 Sep 2016
  by Arturo Guadalupi
  modified 8 Sep 2016
 by Colby Newman
 This example code is in the public domain.
 https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink
*/
// the setup function runs once when you press reset or power the b
void setup() {
 // initialize digital pin LED_BUILTIN as an output.
  pinMode(LED_BUILTIN, OUTPUT);
}
// the loop function runs over and over again forever
void loop() {
    digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the
    delay(1000);
                                    // wait for a second
    digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making t
    delay(1000);
                                    // wait for a second
}
```

Code Analysis

/*

pinMode(LED_BUILTIN, OUTPUT);

The first thing the code does is to initialize LED_BUILTIN as an output pin in the setup() function. Most Arduino series boards default the onboard LED to digital pin 13. The constant LED_BUILTIN connects the onboard LED to pin 13.

digitalWrite(LED_BUILTIN, HIGH);

In the **loop()** function, we set the **LED_BUILTIN** pin to the "on" state, outputting 5V or 3.3V voltage to this pin, which can be represented by **HIGH**. However, note that all I/O pins on XIAO are 3.3V. Do not input a voltage exceeding 3.3V, or it may damage the CPU.

digitalWrite(LED_BUILTIN, LOW);

What comes on must turn off. This statement sets the LED_BUILTIN pin to the "off" state, outputting OV voltage to this pin, which can be represented by LOW.

delay(1000);

This is a delay statement. It means that the LED can maintain the "on" or "off" state for 1 second, because the parameter in the function is in milliseconds, so 1000 milliseconds is 1 second. After controlling the "on" and "off" statements of the LED, a delay must be added, and the waiting time should be the same to ensure that the LED flashes evenly.

Upload the Program

Next, we will learn how to upload the program. Use the data cable in the kit to connect XIAO to the computer, as shown in the figure.

Choose the serial port of the development board from the "Tools" bar. For Windows users, it is generally COM3 or a larger number. Select it as shown in the figure below.

If several ports are displayed for selection, unplug the data cable, reopen the "Tools" bar, and the port that disappears is the XIAO port. Reconnect the circuit board and then select this serial port. After selecting the board and the serial port, you can see the controller model and corresponding serial port that have been set up in the lower right corner of the IDE interface.

🔤 L4_	ReadButton_XIA	AO Ardı	uino IDE 2.1.0					-		×
File	Edit Sketch	Tools	Help			_				
) 🔿 🚯	A	Auto Format	Ctrl+T					≁	۰ © ۰۰
	L4_ReadE	N	Manage Libraries	Ctrl+Shift+I						
	7	S	Serial Monitor	Ctrl+Shift+M						
1	8	5	serial Plotter							
lik	10 11	v L	WiFi101 / WiFiNINA Firmware Updater Jpload SSL Root Certificates							
	12 13	B	Board: "Seeeduino XIAO"		۲					.
÷.	14	P	Port: "COM14"		•		Serial ports			
	15 16	C	Get Board Info			~	Cଦ୍ଦୁM14 (Seeed	uino XIAO))	
	17	0	Debug: "Off"		۲					
	18	S	SERCOM4: "USART"		۲					
	20	ι	JSB Stack: "Arduino"		۲					
	Output	P	Programmer		۲			*	e) =x
	Message (E	Burn Bootloader			Nev	w Line 🔻	9600 ba	ud	•
								\frown		
8								ЪŢ,		
				Ln	7, C	ol 30	Seeeduino XIAO	on COM14	D,	

In Mac or Linux systems, the serial port name is generally /dev/tty.usbmodem+number or /dev/ cu.usbmodem+number, as shown in the figure below.

Í.	Arduino IDE	File	Edit	Sketch	Tools	s Help			
		e sketch		ψ \$ v17a.inc	Auto Archi Mana Seria Seria	Format ive Sketch age Libraries al Monitor al Plotter	0 0	жт ж I жм	Q. √,
	-	1 2 3	v	oid se // pu	WiFi1 Uplo	101 / WiFiNINA Firmware Up ad SSL Root Certificates	pdater		
	۲ ۲	4 5 6 7 8 9	} v }	oid lo // pu	Board Port: Get E Debu SERC USB	d: "Seeeduino XIAO" "/dev/cu.usbmodem1101" Board Info ug: "Off" COM4: "USART" Stack: "Arduino"			Serial ports ✓ /dev/cu.usbmodem1101 (Seeeduino XIAO) /dev/cu.XiaomiBuds4Pro /dev/cu.HECATEGX07 /dev/cu.Bluetooth-Incoming-Port
	Q	10			Prog Burn	rammer Bootioader		>	
	8								\mathbf{S}
						Li	n 1, Col 1 🗄	Seee	duino XIAO on /dev/cu.usbmodem1101 🛛

Next, we can upload the program. Before uploading, we can click the W verify-button.png(verify button) to verify whether the program is correct. If "Compilation Completed" is displayed, the program is correct.

Click the 💽 upload-button.png (upload button), the debug window will display "Compiling Project+Upload". When "Upload Completed" is displayed, you can see the effect of the program running on XIAO, as shown in the upload successful prompt window displayed on a Mac computer.

- Attention -

When you start writing code, you will often forget the rules of uppercase and lowercase, punctuation, and make mistakes. Therefore, try to write code by yourself instead of copying and pasting. After the example program is successfully uploaded, try to create a new Sketch and start manually inputting the code.

1.1.4 Task 2: Complete the Blink example by connecting an – external LED to Seeed XIAO ESP32C3 without LED

If the XIAO you have on hand is Seeed XIAO ESP32C3, since it does not have an onboard LED available for users, in order to run the Blink program, you need to first connect an LED to the D10 pin of the board, as shown below:

- Attention -

You must connect a resistor (about 150Ω) in series with the LED to limit the current flowing through the LED to prevent the strong current from burning the LED.

Then copy the following program to the Arduino IDE:

```
// Define the LED pin according to the pin diagram
int led = D10;
void setup() {
    // Initialize the digital pin 'led' as output
    pinMode(led, OUTPUT);
}
void loop() {
    digitalWrite(led, HIGH); // Turn the LED on
    delay(1000); // Wait for a second
```



```
digitalWrite(led, LOW); // Turn the LED off
  delay(1000); // Wait for a second
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/blob/main/code/L1_Blinks_XIAO_ESP32C3/L1_Blinks_XIAO_ESP32C3.ino</u>

Code Analysis

int led = D10;

Seeed XIAO ESP32C3 does not have an onboard LED, so we did not preset an LED corresponding pin in the Arduino core. Just now, we connected the LED to the **D10** pin, so we need to declare it in the program.

pinMode(led, OUTPUT);

We defined led as D10, and this step is to initialize led(D10) as an output pin.

1.1.5 Extended Exercise

Rewrite the Blink program: In the example program, the LED is on and off for 1 second each time, so it seems to blink evenly. Try adjusting the waiting time to give the LED different blinking effects.

Hint:

```
void setup() {
    pinMode(LED_BUILTIN, OUTPUT);
}
void loop() {
    digitalWrite(LED_BUILTIN, HIGH);
    delay(1000);
    digitalWrite(LED_BUILTIN, LOW);
    delay(500);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/blob/main/code/L1_II_Blinks_1_en/L1_II_Blinks_1_en.ino</u>

For XIAO ESP32C3, we also need to modify the pin definition part of the program:

```
int led = D10;
void setup() {
    pinMode(led, OUTPUT);
}
void loop() {
    digitalWrite(led, HIGH);
    delay(1000);
    digitalWrite(led, LOW);
    delay(500);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/blob/main/code/L1_II_blinks_2_en/L1_II_blinks_2_en.ino</u>

1.2 Using the Button Switch on the XIAO Expansion Board to Control an LED Light

In the previous section, we learned how to control an LED light to blink using only the Seeed Studio XIAO and the onboard LED light. However, there was no interaction with the external environment, such as controlling the LED light through light or sound. In this section, we will introduce a simple sensor - the button switch, to form an automatic control system of sensor-controller-actuator. Before starting the task, we need to learn some basic knowledge, like what variables are and the common program structures, so that we can better understand and run the program.

1.2.1 Background Knowledge

In the last section, we only used the onboard LED light of the Seeed Studio XIAO without connecting other modules. It could take quite some effort for beginners to use Dupont wires to connect external sensors to a board the size of a thumb and also involve a breadboard. Is there a simpler method?

Seeed Studio XIAO Expansion Board

The <u>Seeed Studio XIAO Expansion Board</u>, only half the size of Raspberry Pi 4, is powerful and can quickly and easily build prototypes and projects. The board has a variety of peripherals such as OLED, RTC, expandable memory, passive buzzer, RESET/User button, 5V servo/sensor connector, various data interfaces... You can explore the infinite possibilities of Seeed Studio XIAO. The board also supports <u>CircuitPython</u>.

All models in the Seeed Studio XIAO series have uniform specifications and support the Seeed Studio XIAO <u>Grove Shield</u> and <u>Seeed Studio XIAO Expansion Board</u>. The series includes <u>XIAO SAMD21</u>, <u>XIAO RP2040</u>, <u>XIAO nRF52840</u>, <u>XIAO nRF52840</u> <u>Sense</u>, <u>XIAO ESP32C3</u> and <u>XIAO ESP32S3</u>. The front and back function interfaces of the XIAO expansion board are shown in the following figure:

To make it easier and quicker to build projects with Seeed Studio XIAO, we equipped it with a powerful expansion board. This board has a wealth of onboard peripherals and can quickly connect to more electronic modules to implement various functions. The expansion board brings out all the pins of XIAO, as shown in the pin diagram below:

Pinout

In most cases, the XIAO expansion board is suitable for all Seeed Studio XIAO series products.

When we need to use the XIAO expansion board, we need to connect the XIAO development board to the corresponding position on the expansion board, as shown in the figure below. Connect the pin headers on the XIAO main board to the position circled in yellow on the expansion board. Be sure to align it before pressing down to avoid damaging the pins. After that, we can start working on projects in combination with the expansion board.

- Attention -

Please first plug the Seeed Studio XIAO into the two female headers on the expansion board, and then plug in the Type-C power supply, otherwise it will damage the Seeed Studio XIAO and the expansion board.

Three Basic Structures of Programs

The three basic structures of programs are sequential structure, selection structure, and loop structure.

Sequential Structure

As the name suggests, the program in a sequential structure is executed in the order of the statements. It is the most basic and simple program structure. As shown in the figure below, the program will first execute the operation in the SI box, then the operation in the S2 box, and so on.

Selection Structure

In a program, sometimes we need to make judgments based on the situation to decide the next step. For instance, the program might need to judge the light value in the current environment. If the light value is high, indicating a bright environment, there's no need to light up the light.

If the light value is low, indicating a dim environment, then it's necessary to turn on the light. In such cases, we use a selection structure.

As shown in the following figures, the selection structure will judge whether the condition is fulfilled. If "True", it executes S1; if "False", it executes S2; or if "True", it executes S1, if "False", it exits the selection structure.

The if Statement

The if statement is the most common selection structure, which executes the following statement when the given expression is true. The if statement has three structural forms as shown in the following example. Simple branch structure: Execute when the condition is fulfilled.

```
if (expression) {
   statement;
}
```

Dual branch structure: Execute statement1 when the condition is fulfilled, otherwise execute statement2.

```
if (expression) {
  statement1;
}
else {
  statement2;
}
```

Multi-branch structure: Use nested if statements to judge different situations.

```
if (expression1) {
   statement1;
}
else if (expression2) {
   statement2;
}
else if (expression3) {
   statement3;
}
```

switch.....case Statement

When dealing with multiple selection branches, using an "if.....else" structure to write a program can be quite lengthy. In this case, it's much more convenient to use a switch statement. The switch structure compares the expression in parentheses with the constants after case. If they match, it executes the corresponding statement and exits the structure via a break statement. If none match, it runs the statement after default. It's important to note that the expression in parentheses after switch must be of integer or character type.

break Statement

The **break** statement can only be used in a **switch** multi-branch selection structure and loop structures. It is used to terminate the current program structure, allowing the program to jump to subsequent statements for execution.

Loop Structure

A loop structure is used when a part of the program needs to be executed repeatedly, based on given judgment conditions to determine whether to continue executing a certain operation or exit the loop. There are three common types of loop statements:

while Loop

The while **loop** is a type of "when" loop that executes the statements in the loop body when a certain condition is met.

```
while (expression) {
   statement;
}
```


do.....while Loop

This is a type of "until" loop. The statement in the loop body is executed once before the expression is evaluated. If the expression is true, the loop continues.

```
do {
   statement;
} while (expression);
```

for Loop

This includes three expressions: Expression1 for initialization, Expression2 for judgment, and Expression3 for increment.

```
for (Expression1; Expression2; Expression3) {
   statement;
}
```

In addition to the above loop statements, there are control statements, **break** and **continue**, in the loop structure used to prematurely end the loop or exit the loop. In this lesson, we just need to understand these program structures. In later courses, we will gradually master them through project examples.

1.2.2 Task 1: Control the LED on the XIAO using the button on the XIAO expansion board

Analysis

The effect we want to achieve is that when the button is pressed, the LED lights up; when the button is released, the LED goes off. The program is written in three steps:

- Define pins and create variables.
- Initialize and set pin status.
- Read the button status, implement condition judgment. If the button is pressed, the light is on, otherwise, the light is off.

- Variable -

In a program, a value that can change is called a variable. For example, defining an integer variable i as int i;. We can assign a value to the variable at the same time as we define it, such as int i =0;. Furthermore, depending on the data type, different statements are used to define variables, such as defining a floating point number, float x = 1.9;, and so on. For more details, refer to the Arduino data types and constants documentation <u>https://www.arduino.cc/reference/en/#variables</u>.

Writing the Program

Step 1: Define pins and create variables. The on-board button switch on the XIAO expansion

board is **D1**, so we define it as pin 1 and set a variable for the button status. Note that **LED_ BUILTIN** will set the LED to the correct pin, so we don't need to manually define it:

```
const int buttonPin = 1; // The on-board button switch on the XIAO expansion board
is D1, which we define as pin 1
// If you are using XIAO RP2040, please change 1 to D1
int buttonState = 0; // buttonState is a variable to store the button status
```

Step 2: Set pin status. Set the LED pin to output status and the button pin to input pull-up status. Use **INPUT_PULLUP** to enable internal pull-up resistors. When the button is not pressed, it returns 1 or **HIGH** (high level). When the button is pressed, it returns 0 or **LOW** (low level).

```
void setup() {
    pinMode(LED_BUILTIN, OUTPUT);// Set the LED pin to output status
    pinMode(buttonPin, INPUT_PULLUP);// Set the button pin to input status
}
```

Step 3: Continuously read the button status. If the button is pressed, the light is on, otherwise, the light is off. Because the on-board LED of the XIAO is negative logic, when the button is pressed and returns **0**, the LED is on; when it returns **1**, the LED is off.

```
void loop() {
    // Read the button status and store it in the buttonState variable
    buttonState = digitalRead(buttonPin);
    // Check whether the button is pressed, if the button is pressed
    if (buttonState == HIGH) {
        // Turn on the LED:
        digitalWrite(LED_BUILTIN, HIGH);
    }
    else {
        // Turn off the LED:
        digitalWrite(LED_BUILTIN, LOW);
    }
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/blob/main/code/L2_Button_XIAO_en/L2_Button_XIAO_en.ino</u>

Uploading the Program

We upload the program we wrote to the hardware. First, use the data cable in the kit to connect the XIAO to the computer.

Note the position of the buttons on the XIAO extensions used for testing in the figure.

Then click the verify button is to verify the program. If it is correct, click the upload button to upload the program to the hardware. When the debugging area displays "Done uploading.", we can press the button to see if the LED lights up.

There are two identical buttons on the expansion board. One is the RESET button near the Type-C interface, and the other is the user-defined button near the lithium battery interface. Test with the one near the lithium battery interface.

1.2.3 Task 2: Use the button on the XIAO expansion board to control the external LED on the XIAO ESP32C3

For the Seeed XIAO ESP32C3, it doesn't have an on-board LED for users to use. To run the Blink program, you need to first connect an LED to the **D10** pin of the board as shown:

- Attention -

Be sure to add a resistor (about 150Ω) in series with the LED to limit the current flowing through the LED to prevent overcurrent from burning out the LED.

Then copy the following program into the Arduino IDE:

/*

* Button controlling external LED of XIA

Apologies for the confusion. It seems that there was an issue with quoting text from the document. Let's continue:

Task 2: Use the button on the XIAO expansion board to control the external LED on the XIAO ESP32C3 For the Seeed XIAO ESP32C3, it doesn't have an on-board LED for users to use. To execute the Blink program, you first need to connect an LED to the board's `D1O` pin as shown.

> \triangle Note: Make sure to add a resistor (about 150 Ω) in series with the LED to limit the current flowing through the LED and prevent overcurrent from burning out the LED.

```
Then, copy the following program into the Arduino IDE:
```cpp
/*
 * Button controlling external LED of XIAO ESP32C3
 */
const int buttonPin = 1; // The pin number of the button
int buttonState = 0; // Variable for reading the button status
int led = D10; // Pin number of the LED
void setup() {
 // Initialize the LED pin as an output:
 pinMode(led, OUTPUT);
 // Initialize the button pin as an input:
 pinMode(buttonPin, INPUT_PULLUP);
}
```

```
void loop() {
 // Read the state of the button:
 buttonState = digitalRead(buttonPin);
 // Check if the button is pressed. If it is, the button state is HIGH
 if (buttonState == HIGH) {
 // Turn the LED on:
 digitalWrite(led, HIGH);
 }
 else {
 // Turn the LED off:
 digitalWrite(led, LOW);
 }
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L2\_Button\_XIAO\_ESP32C3\_en</u>

## **Powering XIAO with an external battery**

When demonstrating the effect, in addition to using a data cable to power the computer, you can also use an external lithium battery. This makes it convenient to move and do projects, as shown in the picture.



## **Expanded Exercise**

## **Flow Chart**

Before writing the program, you can first draw a flow chart of the program to help organize your thoughts. The common flow chart symbols are as follows:

$\bigcirc$	Start/End box: Indicates the start or end of a program.
	Process box: Indicates the execution or handling of certain tasks.
$\bigcirc$	Decision box: Represents the judgment of a certain condition.
	Input/Output box: Represents the input of data or the output of results.
$\longrightarrow$	Connection line: Represents the direction of the process flow.

The button-controlled LED program we implemented in this section is represented by the following flow chart. You can try drawing it yourself.



# 1.3 Transforming XIAO and its Expansion Board into a Morse Code Transmitter

Everyone knows that "SOS" is an internationally recognized emergency signal, a form of Morse code. Today, we will transform Seeed Studio's XIAO into a Morse code transmitter. We will try to make the onboard buzzer of the expansion board send signals automatically. In addition, we will learn how to control the buzzer manually with a button.

## 1.3.1 Background Knowledge

## **Buzzer**

A buzzer is an integrated electronic sound device that generates sound based on the input of an electrical signal. Buzzers are often installed on electronic products for sound generation. There are two types of buzzers: active (source buzzers) and passive (sourceless buzzers).

**Active Buzzers:** These buzzers have a simple oscillation circuit inside. When connected to a DC power supply, the buzzer can convert a constant DC into a certain frequency pulse signal,

thereby driving the internal aluminum sheet to vibrate and make a sound. Active buzzers can usually only emit some fixed-pitch (frequency) sounds and are widely used in the sound devices of computers, printers, copiers, alarms, electronic toys, car electronics, phones, timers, and other electronic products.

**Passive Buzzers:** These buzzers work similarly to loudspeakers. They don't have an internal oscillator and need to be connected to a changing current signal to work. They usually use different frequency square wave signals for driving. The sound generated by passive buzzers will change according to the change in input signal, and they can output a variety of sounds like speakers, not just emitting a fixed single tone (frequency).

The standalone buzzer module is shown in the figure below.

In the Seeed Studio XIAO expansion board, there is an onboard passive buzzer connected to pin A3. We can output PWM pulse signals to this pin to control the buzzer.



## tone() and noTone() Functions

## tone() Function

The **tone()** function can generate a fixed frequency PWM signal to drive a passive buzzer to make a sound, and it can define the frequency and duration of the sound.

Syntax: tone(pin, frequency); tone(pin, frequency, duration);

#### Parameters:

**pin:** The pin to which the buzzer is connected (in the Seeed Studio XIAO expansion board, it's A3).

frequency: The frequency of the sound (unit: Hz), the type allowed is unsigned integer.

duration: The duration of the sound (unit: milliseconds, this parameter is optional), the type allowed is unsigned long.

## noTone() Function

This function is used to stop the sound of the buzzer controlled by the **tone()** function. If there is no sound generated, the function is invalid.

Syntax: noTone(pin);

#### Parameters:

**pin:** The pin to stop the sound.

## **Common Operators**

In previous studies, we have used some operators. Next, we will learn about common types of operators and their usage methods.

## **Arithmetic Operators:**

Operator	Explanation
=	Assignment operator
+	Addition operator
-	Subtraction operator
*	Multiplication operator
/	Division operator
%	Modulus operator

#### **Boolean Operators:**

Operator	Explanation							
&&	Logical "and"							
!	Logical "not"							
II	Logical "or"							

## **Comparison Operators:**

Operator	Explanation
!=	Not equal to
<	Less than
<=	Less than or equal to
==	Equal to
>	Greater than
>=	Greater than or equal to

## **Compound Operators:**

Operator	Explanation							
++	Self-increment							
+=	Compound addition							
	Self-decrement							
-=	Compound subtraction							

For detailed explanations, see: <u>https://www.arduino.cc/reference/en/</u>

## **Morse Code**

Morse code is a method of expressing information in telecommunication, named after the inventor of the telegraph, Samuel Morse.

The international Morse code encodes the 26 English letters A to Z, some non-English letters, Arabic numbers, and a small number of punctuation marks and prosigns. There is no distinction between upper and lower case letters. Each Morse code symbol consists of a series of dots (·) and dashes (—). The duration of a dot is the basic unit of time measurement in Morse code transmission. The duration of a dash is three times the duration of a dot. After each dot or dash in a character, there is a time when the signal is absent, called a space, equal to the duration of a dot. For example, the standard emergency distress signal SOS is expressed in Morse code as shown in the figure below.



Source of the picture: https://en.wikipedia.org/wiki/ Samuel\_Morse

#### •••---••

If it's expressed in sound, it sounds like this.

https://files.seeedstudio.com/wiki/XIAO\_Big\_Power-Board-ebook-photo/chapter\_1-3/sos.wav

## 1.3.2 Task 1: Automatic Broadcasting of "SOS"

## Analysis

Automatic broadcasting means that when the control board is started, the onboard buzzer automatically emits the Morse code of "SOS". The program is written in three steps:

- Define the buzzer pin
- Initialization, setting the state of the buzzer pin
- Loop the buzzer to play the Morse code of "SOS"

Let's first look at how to reflect the Morse code of "SOS" through the program. If you import the audio file of Morse code into the audio editing software, you can see the waveform of the sound and the duration of each syllable, which is generally divided into long and short sounds. To facilitate understanding and programming, we use a binary way to mark the switch of the buzzer, 1 indicates the buzzer is on, 0 indicates the buzzer is off, and the gray number represents how long the current status needs to last. After a Morse code ends, because it needs to be looped, you need to leave time between the two Morse codes, here it is set to 0.8 seconds.

																	÷0 T
0:03.0	00						1 14		د ه				a la	та;	ς. 4		19.09.05 14
1		1		1		1		1		1		1		1		1	
0.1		0.1		0.1		0.3		0.3		0.3		0.1		0.1		0.1	
	0		0		0		0		0		0		0		0		0
	0.1		0.1		0.4		0.1		0.1		0.4		0.1		0.1		0.8

To emit a short sound, which corresponds to a dot in Morse code, from the buzzer, you can use the following code in Arduino:

```
tone(pinBuzzer, 200);
delay(100);
noTone(pinBuzzer);
delay(100);
```

In this code snippet:

- tone(pinBuzzer, 200) generates a sound at a frequency of 200 Hz on the buzzer connected to the pinBuzzer pin.
- delay(100) waits for 100 milliseconds. This is how long the sound lasts.
- noTone(pinBuzzer) stops the sound on the buzzer.
- The final delay(100) ensures there's a pause before the next sound is generated, representing the space between the signals.

The code you provided is a complete Arduino program for emitting the SOS Morse code signal using a buzzer. Here is the English explanation:

## Writing the Program

Step 1: Define pins and create variables

```
int pinBuzzer = 3; // Define the buzzer on pin 3, if you're using XIAO RP2040/XIAO
ESP32, change 3 to A3
```

Step 2: Set pin state

```
void setup() {
 pinMode(pinBuzzer, OUTPUT); // Set the buzzer pin to output state
}
```

Step 3: Loop to play "SOS" Morse code

```
void loop() {
 // Emit three short signals:
 for(int i = 0; i < 3; i++){</pre>
 tone(pinBuzzer, 200);
 delay(100);
 noTone(pinBuzzer);
 delay(100);
 delay(200);
 // Emit three long signals:
 for(int i = 0; i < 3; i++){</pre>
 tone(pinBuzzer, 200);
 delay(300);
 noTone(pinBuzzer);
 delay(100);
 delay(200);
 // Emit three short signals again:
 for(int i = 0; i < 3; i++){</pre>
```

```
tone(pinBuzzer, 200);
 delay(100);
 noTone(pinBuzzer);
 delay(100);
}
delay(800); // Wait before repeating
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L3\_SOS\_XIAO\_en</u>

## **Uploading the Program**

To upload the program to your hardware, connect your XIAO to your computer using the data cable included in the kit. After this, click on the verify button of to check your program. If it passes verification, click on the upload button of to upload the program to your hardware.

When the debug area shows "Done uploading.", you can listen to the Morse code sound. Is it the rhythm you expected?

Note the position of the buttons on the XIAO extensions used for testing in the figure.



## 1.3.3 Task 2: Control the buzzer with a button

Controlling the buzzer with a button to emit Morse code can be done manually. The code logic is simple: use an if statement to determine if the button is pressed. If it is, then the buzzer emits a sound.

## Analysis

The program is also written in three steps:

- Define the buzzer and button pins.
- Initialize by setting the state of the buzzer and button pins.
- Determine whether the button is pressed; if pressed, emit a sound.

## Write the program

Step 1: Define the buzzer and button pins

```
const int buttonPin = 1; // The button is on pin 1, if you are using XIAO RP2040/
XIAO ESP32, please change 1 to D1
int pinBuzzer = 3;// The buzzer is on pin 3, if you are using XIAO RP2040/XIAO
ESP32, please change 3 to A3
```

Step 2: Set the button and buzzer pin states

```
void setup() {
 // Set the buzzer pin as output:
 pinMode(pinBuzzer, OUTPUT);
 // Set the button pin as input:
```
```
pinMode(buttonPin, INPUT_PULLUP);
```

**Step 3:** Check the button state, if the button is pressed, the buzzer sounds. Here, the tone() function is used to control the passive buzzer to make a sound.

```
void loop() {
 // buttonState is the button variable, read the button state and store it in the
variable:
 int buttonState = digitalRead(buttonPin);
 // Check if the button is pressed, if the button is pressed:
 if (buttonState == LOW) {
 // The buzzer sounds with a frequency of 200, for a duration of 200 milli-
 seconds
 tone(pinBuzzer, 200, 200);
 }
}
```

#### - Attention -

}

There are two identical buttons on the expansion board, one is the RESET button, which is closer to the Type-C interface, and the other is the user-defined button, which is closer to the lithium battery interface. When testing, press the one closer to the lithium battery interface.

The complete program is as follows:

```
/*
* Button-SOS
*/
const int buttonPin = 1; // The button is on pin 1, if you are using XIAO RP2040/
XIAO ESP32, please change 1 to D1!
int pinBuzzer = 3; // The buzzer is on pin 3, if you are using XIAO RP2040/XIAO
ESP32, please change 3 to A3!
void setup() {
 // Set the buzzer pin as output:
 pinMode(pinBuzzer, OUTPUT);
 // Set the button pin as input:
 pinMode(buttonPin, INPUT_PULLUP);
}
void loop() {
 // buttonState is the button variable, read the button state and store it in the
variable:
 int buttonState = digitalRead(buttonPin);
 // Check if the button is pressed, if the button is pressed:
 if (buttonState == LOW) {
 // The buzzer sounds with a frequency of 200, for a duration of 200 milliseconds
 tone(pinBuzzer, 200, 200);
 }
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L3\_ButtonSOS\_XIAO\_en</u>

## Uploading the program

We will upload the written program to the hardware. First, connect the XIAO to your computer using the data cable from the kit.



Next, click (verify button) to validate the program. If there are no errors, click (upload button) to upload the program to the hardware. When the debug area shows "Done uploading.", we can press the button on the XIAO expansion board and test whether the buzzer will sound.

## 1.3.4 Extended Exercise

The passive buzzer can emit different pitches to form a simple melody. Research how to make Arduino play notes through a search engine. You can open the extended exercise code to experience the effect of playing "Happy Birthday" with the buzzer.

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L3\_HappyBirthday\_en</u>

## 1.4 Monitor Knob Value Changes with Serial Monitor

When we write a few lines of code to control the board to light up the LED, or to use a button switch to control the buzzer, we can intuitively see the working state of these external hardware. If it achieves our expected results, it is very fortunate. What if it doesn't? The program compiles without error, where is the mistake? It would be nice if they could speak up. In this section, we will learn how to communicate with the computer through the serial monitor and check the running status and information of the program and hardware.

## 1.4.1 Background Knowledge

#### **Rotary Potentiometer**

The rotary potentiometer, although it doesn't seem common, has a very wide range of uses in household appliances and industrial equipment. For example, the volume knob on the sound system.

The rotary potentiometer can produce an analog output value between 0 and VCC (the voltage of the connected circuit) on its connected pins. By rotating the knob, you can change the output voltage value. The range of the knob's angle is 300°, and the output value is 0-1023. We can use the rotary potentiometer to control the LED light to show brightness changes, or control the servo to rotate at different angles, etc.



## Analog I/O

In the Arduino series of development boards, the pins with "A" in front of the pin number are analog input pins. We can read the analog value on these pins to achieve the effect we want.

## **Analog Signal**

In life, analog signals are everywhere, such as the change in sound, light, temperature, etc., the frequency, amplitude, etc. of the signal can change continuously with time.

So how do we read the analog value of the pin through the development board? The analog input pin has an ADC (analog-to-digital converter), which can convert the external input analog signal into a digital signal that the development board can recognize, thereby achieving the function of reading in analog values, i.e., it can convert a 0-5V voltage signal into an integer value of 0-1023.



• analogRead();

Read the value from the specified analog pin.

#### Syntax: analogRead(pin);

#### **Parameters:**

pin: The name of the analog input pin to be read.

#### • analogWrite();

Corresponding to analog input is analog output. We use the analogWrite() function to achieve this function. It should be noted that when using this function, it is only through a special way to output different voltages to achieve the effect of approximate analog values. This method is called PWM pulse width modulation, so we are writing PWM square waves to the specified pin, not the true analog value.

#### Syntax: analogWrite(pin, value);

#### Parameters:

pin: The pin to output PWM, allowed data type: int.

value: Duty cycle, between 0-255, allowed data type: int.

#### - PWM Pulse Width Modulation -

Pulse width modulation (PWM) is a way to achieve analog results through digital output. Simply put, you can control the charging current by adjusting the period of PWM and the duty cycle of PWM. As shown in the figure, the voltage is switched back and forth between OV (low level) and 5V (high level). A switchback

is a period. In this period, if the time of high voltage is 25% and the time of low voltage is 75%, the duty cycle is 25%, and the output voltage is 5V.

When we write a few lines of code to control the lighting of LEDs on the development board, or use button switches to control the buzzer, we can directly observe the working status of these external hardware. If it achieves our expected results, we are lucky. But what if it doesn't? The program compiles without errors, so where is the problem? It would be nice if they could talk. In this section, we will learn how to communicate with the computer, monitor the running status and information of the program and hardware through the serial monitor.



## **Serial Communication**

When we want to communicate with other devices using XIAO, the most common method is serial communication. All Arduino series development boards have this functionality. As we

know, computers understand binary data (like 1010). Therefore, among electronic devices, serial communication achieves its function by sending and receiving such data. The key component to implement this function is the USART (Universal Synchronous/Asynchronous Receiver Transmitter). In the Arduino IDE, we can observe the sent and received data through the Serial Monitor, and we need related serial communication functions to implement this feature.

Sender	1 1	001101	Receiver
11001101	parallel/serial	serial/parallel	11001101
	conversion	conversion	

#### \*\*Serial.begin();\*\*

This function is used to open the serial port and set the data transmission rate.

#### Syntax: Serial.begin(speed);

#### Parameters:

Serial: Serial port object.

speed: Baud rate, commonly set to values like 9600, 115200, etc.

\*\*Serial.println();\*\*

#### Syntax: Serial.println(val);

#### Parameters:

Serial: Serial port object.

val: The value to be printed, which can be of any data type.

For example, to print "hello world!!!" to the Serial Monitor, we need to initialize the serial port in the **setup()** function and output "hello world!!!" through the serial port in the **loop()** function:

```
void setup() {
 Serial.begin(9600); // Initialize the serial port and set the data transmission
rate to 9600
}
void loop() {
 Serial.println("hello world!!!"); // Output "hello world!!!" through the serial
port
}
```

Returning to the question at the beginning of this section: when we have written the code and verified it to be correct, but the effect of running the code exceeds expectations or the hardware doesn't respond at all, where is the problem? At this time, we can use the Serial Monitor to observe the data sent or received by the hardware to make a judgment. For instance, we can control the on-off state of an LED with a button, and we can use the Serial Monitor to check the returned value when the button is pressed to determine whether the button is working properly. Next, we will learn how to use the Serial Monitor to make the hardware "speak".

## 1.4.2 Task 1: Use the Serial Monitor to Check if the Button is Pressed

## Analysis

Remember controlling the on-off state of an LED with a button? Some of the code can be reused. We only need to read the button on-off setting and button on-off state code, and then add the initialization of the serial port and the data sent to the serial port. The program writing still follows three steps:

- · Define button pins and variables.
- Initialize the serial port, set the serial port baud rate, and set the status of the button on-off pin.
- Read the button state and send it to the serial port.

## Write the program

**Step 1:** Define the button pin and variable.

```
const int buttonPin = 1; // Define the button switch as pin 1. If you are using XIAO
RP2040/XIAO ESP32, please change 1 to D1
int buttonState = 0; // Define buttonState as a variable to store the button status
```

**Step 2:** Initialize the serial port, set the baud rate of the serial port, and set the button switch pin status.

```
void setup() {
 pinMode(buttonPin, INPUT_PULLUP); // Set the button pin as input
 Serial.begin(9600); // Initialize the serial port
}
```

Step 3: Read the button status and send it to the serial port

```
void loop() {
 buttonState = digitalRead(buttonPin); // Read the button status and store it in
the buttonState variable
 Serial.println(buttonState); // Send the button status data to the serial port
 delay(500);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L4\_ReadButton\_XIAO\_en</u>

## Upload the program

We will upload the written program to the hardware. First, connect the XIAO to the computer with the data cable from the kit.



Note the position of the buttons on the XIAO extensions used for testing in the figure.

Click (Verify Button) in the Arduino IDE to verify the program. If the verification is correct, click (Upload Button) to upload the program to XIAO. When the debug area shows "Done uploading.", open the serial monitor and observe the value changes printed by the serial monitor when the button is pressed and released. What did you find?

••			L4_ReadButton_XIAO_en   Arduino IDE 2.0.4	
<b>Ø</b>	€	↓ Seeeduino XIAO	▼ Serial Monitor	• <b>↓</b> 💿
	L4_Read	Button_XIAO_en.ino		14
-	3 4 5	<pre>*/ const int buttonPin = 1; // Def</pre>	efine the button switch as pin 1. If you are using XIAO RP2040/XIAO ESP32, p	lease cha∎ge
	6 7 8 9	<pre>int buttonState = 0; // Define void setup() { pinMode(buttonPin, INPUT F</pre>	<pre>puttonState as a variable to store the button status PULLUP): // Set the button pin as input</pre>	
☆	10 11 12	<pre>Serial.begin(9600); // In: }</pre>	itialize the serial port	
Q	13 14 15 16	<pre>void loop() {     buttonState = digitalRead(     Serial.println(buttonState     delay(500);</pre>	<pre>(buttonPin); // Read the button status and store it in the buttonState variation e); // Send the button status data to the serial port</pre>	able
	17 18	}		
	Output	Serial Monitor $\times$		* ⊘ ₫
	Message	e (Enter to send message to 'Seeeduin	to XIAO' on '/dev/cu.usbmodem101') New Line • 11520	0 baud
	09:03:5 09:03:5 09:03:5 09:03:5 09:03:5	4.905 -> 1 5.398 -> 1 5.898 -> 1 6.390 -> 0 6.917 -> 0 7.409 -> 0		
8	09:03:5	7.904 -> 1		
			Ln 17, Col 2 Seeeduino XIAO on /dev/cu.usbmodem10	)1 🗘 2 🗖

When we press the button on the XIAO expansion board, the serial monitor shows 0, and when we release the button, the serial monitor shows 1.

## 1.4.3 Task 2: Using the Serial Monitor to View Knob Value Changes

## Analysis

In Task 1, the button switch is a digital input that sends out digital signals 0 and 1, while the knob potentiometer returns an analog signal. We need to read the rotation angle value of the knob potentiometer on pin A0 and send it to the serial port. The program also consists of three steps:

- Define the knob potentiometer pin and variables.
- Initialize the serial port and set the status of the knob potentiometer pin.
- Read and calculate the rotation angle value of the knob potentiometer and send it to the serial port.

## Write the program

**Step 1:** Define the knob potentiometer pin and variables. Here we need to define the voltage value of the ADC (Analog-to-Digital Converter) and the reference voltage of the Grove module interface, because we will calculate the voltage changes in the circuit where the knob switch is connected through these voltage values.

```
#define ROTARY_ANGLE_SENSOR A0 // Define the rotary potentiometer interface A0
#define ADC_REF 3 // ADC reference voltage is 3V
#define GROVE_VCC 3 // Grove interface reference voltage is 3V
#define FULL_ANGLE 300 // The maximum rotation angle of the knob potentiometer is
300°
```

**Step 2:** Initialize the serial port, set the baud rate of the serial port, and set the status of the knob potentiometer pin.

```
void setup()
{
 Serial.begin(9600);//Initialize the serial port
 pinMode(ROTARY_ANGLE_SENSOR, INPUT);//Set the rotary potentiometer pin to input
state
}
```

**Step 3:** Read and calculate the rotational angle value of the rotary potentiometer and send it to the serial port. Here, we first need to set the data type of the voltage variable, set the analog value variable of the rotary potentiometer pin, and then calculate the real-time voltage. After calculating the real-time voltage, calculate the rotational angle value of the rotary potentiometer.

```
void loop()
{
 float voltage; //Variable voltage is of floating-point type
 int sensorValue = analogRead(ROTARY_ANGLE_SENSOR); //Read the analog value at
 the rotary potentiometer pin
 voltage = (float)sensorValue*ADC_REF/1023; //Calculate real-time voltage
 float degrees = (voltage*FULL_ANGLE)/GROVE_VCC; //Calculate the rotation angle
 of the knob
 Serial.println("The angle between the mark and the starting position:"); //
Print characters at the serial port
 Serial.println(degrees); //Print the rotation angle value of the rotary po-
tentiometer at the serial port
 delay(100);
}
```

- #define Macro Definition -

**#define** is a pre-processing command used for macro definitions. In Arduino, we can use **#define** to name constants. During the compilation of the program, all occurrences of the "macro name" will be replaced with the string in the macro definition, such as **#define ledPin 5**. During compilation, 5 will replace all uses of **ledPin**. Syntax: **#define constant name constant value**. The "#" symbol is mandatory, and there is no need to use the ";" symbol at the end of the sentence.

The complete code is as follows:

/\*
 \* Use the serial monitor to view the knob potentiometer
 \*/
#define ROTARY\_ANGLE\_SENSOR A0//Define the rotary potentiometer interface A0
#define ADC\_REF 3 //ADC reference voltage 3V

```
#define GROVE_VCC 3 //Reference voltage 3V
#define FULL_ANGLE 300 //The maximum rotation angle of the rotary potentiometer is
300°
void setup()
{
 Serial.begin(9600);//Initialize the serial port
 pinMode(ROTARY ANGLE SENSOR, INPUT);//Set the rotary potentiometer pin as an in-
put
void loop()
{
 float voltage;//Variable voltage is of floating-point type
 int sensorValue = analogRead(ROTARY_ANGLE_SENSOR);//Read the analog value at the
rotary potentiometer pin
 voltage = (float)sensorValue*ADC REF/1023;//Calculate real-time voltage
 float degrees = (voltage*FULL_ANGLE)/GROVE_VCC;//Calculate the rotation angle of
the knob
 Serial.println("The angle between the mark and the starting position:");//Print
characters at the serial port
 Serial.println(degrees);//Print the rotation angle value of the rotary potenti-
ometer at the serial port
 delay(100);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L4\_ReadRotary\_XIAO\_en</u>

## Upload the program

After writing the program, since external sensors are used, connect the knob module to the A0 interface using the four-color Grove cable as shown in the image below:

After connecting, connect the XIAO main control board to your computer using a data cable.



In the Arduino IDE, click on the verification button is to verify the program. If it verifies correctly, click the upload button to upload the program is to the hardware. When the debugging area shows "Done uploading.", you can proceed. Open the serial monitor and rotate the knob potentiometer to observe the data changes displayed in the serial monitor. These changes represent the angle value of the knob.



## 1.4.4 Extended Exercise

While observing the angle value of the knob potentiometer in the serial monitor, we find that the value is constantly jumping and changing. Observing through the numbers alone is not very intuitive. At this time, we can use the serial plotter. With it, we can plot the data that is printed to the Arduino's serial port in real time. Based on the second task, close the serial monitor and open the **"Tools - Serial Plotter**" as shown in the image below:



The serial plotter draws the data obtained from the serial port into an XY axis curve chart, where the X-axis represents the change in time and the Y-axis represents the data obtained from the serial port. Through the chart, you can more intuitively see the change in data. Please give it a try.

# 1.5 Controlling LED and Servo with a Knob

In the last section, we learned how to use the serial monitor and observed the differences between digital input and analog input through it. In this section, we will further explore the use of analog values by combining them with a rotary potentiometer!

## 1.5.1 Background Knowledge

## Servo and Servo Library

#### Servo

A servo, also known as a servo motor, is a DC motor with gears and a feedback system. We can control the servo to rotate to a specific angular position by sending signals to the circuit. This makes it suitable for electronic devices or robots that require precise position control.



#### Servo Library servo.h

When we want to control a servo using XIAO or other Arduino development boards, we can use the servo.h library file. It's one of the Arduino standard libraries, which is convenient to use and also avoids the problem of limited PWM pin quantity. Here are the relevant functions of the servo library:

• Declare the library file

#include <Servo.h>

- Create the myservo object to control the servo Servo myservo;
- Use the attach() function to call the signal pin myservo.attach();
- Use the write() function to write the angle to the servo, setting the rotation angle of the shaft

#### myservo.write();

The servo library does not need to be manually installed. You can open the example program "**File → Examples → Servo**" and check the two example programs "Knob" and "Sweep" to familiarize yourself with the use of the servo library.

If you can't find Servo under Examples, you can visit <u>https://github.com/arduino-libraries/Servo</u> and add the Servo example by installing the library.

Arduino IDE File E	dit Sketch	Tools	Help		<b>● % %</b> Q Q
🗧 🔵 🌒 New Sk	tch		🧟 sketch_may25a   Arduino IDE 2.1.0		
New Cl	ud Sketch	1€ 3€ N			۸. ۸
Open		#0	· · · ·		۷۰. ۲
Open R	cent	>			
Sketchi	рок -		Duilt in susmaline		
Exampl			Built-In examples		
Close Close			01.Basics		
Save A				ί.	
5		Te 3	03.Analog		
6 voi	<pre>loop() {</pre>		05 Control	Ś	
7 /	put your	main c	06 Sensors	Ś	
8			07 Display	Ś	
÷ 9 }			08.Strings	Ś	
10			09.USB	5	
0			10.StarterKit_BasicKit	5	
~			11.ArduinoISP	5	
			Examples for Seeeduino XIAO		
			Adafruit TinyUSB Library		
			Adafruit Zero DMA Library	2	
			Energy Saving	2	
			FlashStorage	2	
			125	2	
			Lokawan	2	
			Seeed Arduino FreekTUS		
			Seteva_Araumo_LCD		
			SoltwareSerial		
			SPI		
			TimerTC0		
8				ί.	
¢ indexing: 3/43			Wire	5 1,	1, Col 1 Seeeduino XIAO on /dev/cu.usbmodem101
	- A -		Grove-3-Axis-Digital-Accelerometer-2g-to-16g-LIS3DHTR	>	
		201	Servo	5	Knob
					Swaan

## map() Function

The map() function is used to map a number from one range to another. That is, fromLow gets mapped to toLow, and fromHigh gets mapped to toHigh. It's the simplest form of linear mapping.

Syntax: map(value, fromLow, fromHigh, toLow, toHigh)

#### Parameters:

value: The number to be mapped.

fromLow: The lower limit of the current range of the value.

fromHigh: The upper limit of the current range of the value.

toLow: The lower limit of the target range of the value.

toHigh: The upper limit of the target range of the value.

Example: Map val from the range 0-1023 to 0-255.

```
void setup() {}
void loop() {
 int val = analogRead(0); // read the value from analog pin A0
 val = map(val, 0, 1023, 0, 255); // map val to the range 0-255
 analogWrite(9, val); // output the analog value to pin 9
}
```

# 1.5.2 Task 1: Using a knob potentiometer to control the brightness of the onboard LED on the XIAO board

## Analysis:

When using a knob potentiometer to control the LED, we need to use the map() function, because the analog value directly output by the knob potentiometer is 0-1023, this value is not the angle value of the knob rotation, we need to calculate the angle value of the knob potentiometer rotation first, then map this value to the brightness range of the LED 0-255 with the map() function. The steps to write the program are as follows:

- Define the knob potentiometer, LED pin.
- Initialize the serial port, set the status of the knob potentiometer and LED pin.
- Read and calculate the rotation angle value of the knob potentiometer, and send it to the serial port.
- Map the angle value of the knob potentiometer to the LED brightness value and store it in the brightness variable, and the LED outputs this variable value.

## Writing the program

**Step 1:** Define the knob potentiometer, LED pin, here we need to define ADC and VCC reference voltage, in order to calculate the angle value of the knob potentiometer.

```
#define ROTARY_ANGLE_SENSOR A0 //Define rotary potentiometer interface A0
#define LEDPIN 13 //Define LED interface 13
#define ADC_REF 3 //Reference voltage 3V
#define GROVE_VCC 3 //GROVE reference voltage 3V
#define FULL_ANGLE 300 //The maximum rotation angle of the rotary potentiometer is
300°
```

Step 2: Initialize the serial port, set the status of the knob potentiometer and LED pin.

```
void setup()
{
 Serial.begin(9600); //Initialize serial communication
 pinMode(ROTARY_ANGLE_SENSOR, INPUT); //Set the rotary potentiometer pin to input
 pinMode(LEDPIN,OUTPUT); //Set the LED pin to output
}
```

**Step 3:** Read and calculate the rotation angle value of the knob potentiometer, and send it to the serial port.

```
void loop()
{
 float voltage; //Variable voltage of type float
 int sensor_value = analogRead(ROTARY_ANGLE_SENSOR); //Read the analog value at
the rotary potentiometer pin
 voltage = (float)sensor_value*ADC_REF/1023; //Calculate the real-time voltage
 float degrees = (voltage*FULL_ANGLE)/GROVE_VCC; //Calculate the angle of rotation
 of the knob
 Serial.println("The angle between the mark and the starting position:"); //Print
character on serial monitor
 Serial.println(degrees); //Print the rotation angle value of the rotary potenti-
```

```
ometer on the serial monitor
 delay(100);
```

**Step 4:** Map the angle value of the knob potentiometer to the LED brightness value and store it in the brightness variable, and the LED outputs this variable value.

```
//After Step 3
 int brightness; //Define brightness variable
 brightness = map(degrees, 0, FULL_ANGLE, 0, 255); //Map the rotation angle value
 of the rotary potentiometer to the brightness value of the LED and store it in the
 brightness variable
 analogWrite(LEDPIN,brightness); //Output the variable value to the LED
 delay(500);
}
```

The final complete code is shown below:

```
#define ROTARY_ANGLE_SENSOR A0 //Define rotary potentiometer interface A0
#define LEDPIN 13 //Define LED interface 13
#define ADC_REF 3 //Reference voltage 3V
#define GROVE_VCC 3 //GROVE reference voltage 3V
#define FULL_ANGLE 300 //The maximum rotation angle of the rotary potentiometer is
300°
void setup()
{
 Serial.begin(9600); //Initialize serial communication
 pinMode(ROTARY_ANGLE_SENSOR, INPUT); //Set the rotary potentiometer pin to input
 pinMode(LEDPIN,OUTPUT); //Set the LED pin to output
}
void loop()
 float voltage; //Variable voltage of type float
 int sensor_value = analogRead(ROTARY_ANGLE_SENSOR); //Read the analog value at
the rotary potentiometer pin
 voltage = (float)sensor_value*ADC_REF/1023; //Calculate the real-time voltage
 float degrees = (voltage*FULL_ANGLE)/GROVE_VCC; //Calculate the angle of rotation
of the knob
 Serial.println("The angle between the mark and the starting position:"); //Print
character on serial monitor
 Serial.println(degrees); //Print the rotation angle value of the rotary potenti-
ometer on the serial monitor
 delay(100);
 int brightness; //Define brightness variable
 brightness = map(degrees, 0, FULL_ANGLE, 0, 255); //Map the rotation angle value
of the rotary potentiometer to the brightness value of the LED and store it in the
brightness variable
 analogWrite(LEDPIN, brightness); //Output the variable value to the LED
 delay(500);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L5\_RotaryLed\_XIAO\_en</u>

## **Uploading the Program**

After writing the program, connect the rotary potentiometer to the A0 interface using a four-color Grove wire, as shown in the following figure:

Connect the XIAO main control board to your computer with a data cable. After connecting, click (the verify button) in the Arduino IDE to check the program. If there are no errors, click (the upload button) to upload the program to the hardware. When the debug area shows "Done uploading.", you can open the serial monitor to observe the rotation angle and LED brightness values as you rotate the potentiometer.



#### - Attention -

The onboard LED of the XIAO board is used in this example.

If you need to operate offline, you can connect a lithium battery to the expansion board, as shown in the following figure.





## Controlling an External LED with a Knob on the XIAO ESP32C3

The Seeed XIAO ESP32C3 does not have an onboard LED for users. To run this program, you need to first connect an LED to the **D10** pin of the board, as shown below:



- Attention -

Be sure to connect a resistor (about  $150\Omega$ ) in series with the LED to limit the current passing through the LED and prevent it from being damaged by overcurrent.

Next, copy the following program into the Arduino IDE:

```
#define ROTARY_ANGLE_SENSOR A0 // Define rotary potentiometer interface A0
#define LEDPIN D10 // Define LED light interface 10
#define ADC_REF 3 // Reference voltage 3V
#define GROVE_VCC 3 // GROVE reference voltage 3V
#define FULL_ANGLE 300 // The maximum rotation angle of the rotary potentiometer is
300°
void setup()
{
 Serial.begin(9600); // Initialize serial communication
 pinMode(ROTARY_ANGLE_SENSOR, INPUT); // Set the rotary potentiometer pin to in-
put mode
 pinMode(LEDPIN, OUTPUT); // Set the LED light pin to output mode
}
void loop()
{
 float voltage; // Define voltage variable as float
 int sensor_value = analogRead(ROTARY_ANGLE_SENSOR); // Read the analog value on
the rotary potentiometer pin
 voltage = (float)sensor value*ADC REF/1023; // Calculate real-time voltage
 float degrees = (voltage*FULL_ANGLE)/GROVE_VCC; // Calculate the angle of rota-
tion of the knob
 Serial.println("The angle between the mark and the starting position:"); //
Print string to serial port
 Serial.println(degrees); // Print the rotation angle value of the rotary poten-
tiometer to the serial port
 delay(100);
 int brightness; // Define brightness variable
 brightness = map(degrees, 0, FULL_ANGLE, 0, 255); // Map the rotary potentiome-
ter angle value to LED light brightness value and store it in the brightness vari-
able
 analogWrite(LEDPIN, brightness); // Output brightness value to LED light
 delay(500);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L5\_RotaryLed\_XIAO\_ESP32C3\_en</u>

## 1.5.3 Task 2: Control a Servo Motor with a Rotary Potentiometer

#### Analysis

When controlling a servo motor with a rotary potentiometer, we can use the **servo.h** library and modify our first task slightly. The program can be divided into the following steps:

 $\cdot\,$  Declare the servo library, define the servo rotation angle variable, define the rotary

potentiometer pin and voltage.

- Initialize the serial port, set the status of the rotary potentiometer and servo pins.
- Read and calculate the rotation angle value of the rotary potentiometer, send it to the serial port, and drive the servo to rotate according to the angle value change.

#### **Program Writing**

**Step 1:** Declare the servo library, define the servo rotation angle variable, define the rotary potentiometer pin and voltage.

```
#include <Servo.h>// Declare the use of the servo library
#define ROTARY_ANGLE_SENSOR A0 // Define the rotary potentiometer pin as A0
#define ADC_REF 3 // ADC reference voltage is 3V
#define GROVE_VCC 3 // GROVE module reference voltage is 3V
#define FULL_ANGLE 300 // The maximum rotation angle of the rotary potentiometer is
300°
Servo myservo; // Create a myservo object to control the servo
int pos = 0; // Variable to store the rotation angle of the servo
```

Step 2: Initialize the serial port, set the status of the rotary potentiometer and servo pins.

```
void setup() {
 Serial.begin(9600);// Initialize the serial port
 pinMode(ROTARY_ANGLE_SENSOR, INPUT);// Set the rotary potentiometer pin as input
 myservo.attach(5); // The myservo signal is transmitted through pin 5, if you
 are using XIAO RP2040/XIAO ESP32, please modify 5 to D5
}
```

**Step 3:** Read and calculate the rotation angle value of the rotary potentiometer, send it to the serial port, and drive the servo to rotate according to the angle value change.

```
void loop() {
 float voltage;// Set voltage as a floating point
 int sensor_value = analogRead(ROTARY_ANGLE_SENSOR);// Read the analog value at
the rotary potentiometer pin
 voltage = (float)sensor value * ADC REF / 1023;// Real-time voltage is the read
analog value multiplied by the reference voltage divided by 1023
 float degrees = (voltage * FULL ANGLE) / GROVE VCC;// The rotation angle of the
knob is the real-time voltage multiplied by the maximum rotation angle of the rotary
potentiometer divided by the voltage value of the GROVE module interface
 Serial.println("The angle between the mark and the starting position:");// Print
characters on the serial port
 Serial.println(degrees);// Print the rotation angle value of the rotary potenti-
ometer on the serial port
 delay(50);
 myservo.write(degrees); // Write the rotation angle value of the rotary potenti-
ometer into the servo
}
```

The final code is as follows:

```
#include <Servo.h>// Declare the use of the servo library
#define ROTARY_ANGLE_SENSOR A0 // Define the rotary potentiometer pin as A0
#define ADC_REF 3 // ADC reference voltage is 3V
#define GROVE_VCC 3 // GROVE module reference voltage is 3V
```

```
#define FULL ANGLE 300 // The maximum rotation angle of the rotary potentiometer is
300°
Servo myservo; // Create a myservo object to control the servo
int pos = 0; // Variable to store the rotation angle of the servo
void setup() {
 Serial.begin(9600);// Initialize the serial port
 pinMode(ROTARY ANGLE SENSOR, INPUT);// Set the rotary potentiometer pin as input
 myservo.attach(5); // The myservo signal is transmitted through pin 5, if you
are using XIAO RP2040/XIAO ESP32, please modify 5 to D5
}
void loop() {
 float voltage;// Set voltage as a floating point
 int sensor_value = analogRead(ROTARY_ANGLE_SENSOR);// Read the analog value at
the rotary potentiometer pin
 voltage = (float)sensor value * ADC REF / 1023;// Real-time voltage is the read
analog value multiplied by the reference voltage divided by 1023
 float degrees = (voltage * FULL ANGLE) / GROVE VCC;// The rotation angle of the
knob is the real-time voltage multiplied by the maximum rotation angle of the rotary
potentiometer divided by the voltage value of the GROVE module interface
 Serial.println("The angle between the mark and the starting position:");// Print
characters on the serial port
 Serial.println(degrees);// Print the rotation angle value of the rotary potenti-
ometer on the serial port
 delay(50);
 myservo.write(degrees); // Write the rotation angle value of the rotary potenti-
ometer into the servo
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L5\_RotaryServo\_XIAO\_en</u>

## **Upload Program**

After writing the program, first connect the knob potentiometer and the servo to the XIAO expansion board as shown in the figure below. Then, connect the XIAO main control board to the computer with a data cable.



After the connection, click (the verify button) in the Arduino IDE to verify the program. If the verification is error-free, click (the upload button) to upload the program to the hardware. When the debugging area shows "Done uploading.", you can open the serial monitor, rotate the knob potentiometer, and observe the changes in angle value and the movement of the servo. What have you found?

#### - Attention -

The rotation range of the servo is 0°-180°, so you will see in the serial monitor that when the angle value is greater than 180°, the servo stops rotating.



## 1.5.4 Extended Exercise

We have been using the LED on the XIAO board. If I want to use an external LED and control it with a knob potentiometer to create a breathing light effect, what should I do? The XIAO expansion board brings out two digital-analog Grove interfaces, and there is an A7/D7 interface. We can connect the external LED to this interface, as shown in the figure:

After the connection, we can slightly modify the program from Task 1, changing **#define LEDPIN 13 to #define LEDPIN 7**. Upload the modified program and see if it can achieve our desired effect.

Get this program from Github <u>https://github.com/</u> <u>mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/</u> <u>main/code/L5\_RotaryLed\_ledmodule\_en</u>



# 1.6 Displaying "Hello World" on OLED

In our daily life, we see displays everywhere - televisions, computers, phones, car displays, LCD billboards in shopping malls... Without a variety of screens, our lives would lose much of its fun. Of course, these screens, besides leisure and entertainment, are also indispensable tools for daily life. Common displays include LCD displays, OLED displays, etc. They all have their own strengths and weaknesses as display devices and can be applied in different fields and scenarios. The XIAO expansion board integrates an OLED display. In this lesson, we will learn how to use OLED to display text, patterns, and images.

## 1.6.1 Background Knowledge

## **OLED** Display

OLED, also known as Organic Light Emitting Diode, has advantages such as self-luminous, low power consumption, fast response speed, high resolution, light weight, etc. Its application field is very wide. The XIAO expansion board integrates a 0.96 inch 128x64 pixel OLED display, which can be used directly without wiring. During project production, we can display time, temperature and humidity, and other sensor return values through the OLED display, and we can also directly display letters, numbers, graphics, and even patterns, achieving visual interactive effects.



## How to Download and Install the U8g2\_Arduino Library

A library is a collection of program codes, which encapsulates some commonly used functions into a file for users to call. When we use OLED displays, temperature and humidity sensors, etc., we need to use the corresponding libraries. Where can these libraries be downloaded and how to install them? We will explain using the U8g2\_Arduino library file of the OLED display as an example. Enter the website link <u>https://github.com/olikraus/u8g2\_arduino</u> to enter the GitHub page, click Code+Download ZIP to download the resource package to the local, as shown in the figure below.

olikraus/U8g2_Arduino: U8g	⊪ × +				
→ C	3g2_arduino		មា ៤ 🖈 🖬 🕅		
olikraus / U8g2_Arduino	15 v 및 Fork 103 v ☆ Star 246 v				
Code In Pull requests 1	🕞 Actions 🗄 Projects 🗊 Security	└∠ Insights			
P master - P 1 branch	🛇 <b>39</b> tags	Go to file Add file - Code -	About		
elikraus 2.34.5		Local Codespaces (New)	U8glib V2 library for Arduino		
examples	2.34.5	Clone (9)	arduino		
extras	2.34.3	HTTPS SSH GitHub CLI	山 Readme		
src src	2.34.5	https://github.com/olikraus/U8g2_Arduino.	<b>☆ 246</b> stars		
LICENSE	takeover license from master	Use Git or checkout with SVN using the web URL.	<ul> <li>⊙ 25 watching</li> <li>♀ 103 forks</li> </ul>		
C README.md	2.34.5	(*) Open with GitHub Desktop			
heywords.txt	2.32.11		Releases 38		
library.properties	2.34.5	[]] Download ZIP	© 2.33.15 (Latest)		
README.md	on 9月4日 + 37 releases				
LIBa2 Arduir	no: Arduino Monoch	rome Granhics Library			
oogz_Aldul	no. Arduno Monoci	ione oraphics Library	Packages		
			No packages published		
	72		Contributore		
000	5				
			onkraus		
github.com/olik	r dus/u8q2		scis19fr Sébastien Celles		

After the download is complete, open the Arduino IDE, click Sketch→Include Library→Add .ZIP Library, and select the ZIP file you just downloaded.

🗯 A	rduino IDE	File E	dit Sketch	Tools	Help		
		ų.	Verify/Co Upload	ompile	bload	жR жU	Arduino IDE 2.1.0
	sketch_m 1 2	void se	O Upload L Export C C Optimize	Jsing Pro ompiled for Deb	ogrammer Binary ugging		
	3 4 5	}	Show Sk Include L Add File.	etch Folo .ibrary 	der		Manage Libraries ♦ %
	6 7 8 9 <b>10</b>	<pre>void lo // pu }</pre>	op() { nt your main	ı code	here, to	run re	Add .2IP LIbrary Arduino libraries Adafruit TinyUSB Library Adafruit Zero DMA Library Energy Saving FlashStorage HID I2S LoRaWan Seeed Arduino FreeRTOS Seeed_Arduino_LCD SoftwareSerial
8							SPI TimerTC3 TimerTCC0 USBHost Wire Contributed libraries Grove-3-Axis-Digital-Accelerometer-2g-to-16g-LIS3DHTR Servo

If the library is installed correctly, you can see the prompt information for successful library installation in the output window.

## U8g2 Library for OLED

U8g2 is a monochrome graphics library for embedded devices, which supports various types of OLED displays, making it easy for us to write programs to achieve the desired effects. The U8g2 library also includes the U8x8 library, and the two libraries have different functions:



## U8g2

Includes all graphic procedures (line/box/circle drawing); Supports various fonts, (almost) no restrictions on font height; Some memory in the microcontroller is needed to display.

#### U8x8

Only supports text (character) output; Only allows each character to use a fixed-size font (8x8 pixels); Writes directly to the display, no buffer is needed in the microcontroller. Simply put, when we want the OLED display to display various fonts, graphics, patterns, and present visual content more flexibly, we can use the U8g2 library; when we want to display characters more directly, with no font requirements, just to display sensor values, time, etc., we can use the U8x8 library, which is more efficient. We can find many example programs in "File  $\rightarrow$  Examples  $\rightarrow$  U8g2", and familiarize ourselves with the use of the library through the example programs.



Next, we will display characters and draw circles using two libraries respectively.

# 1.6.2 Task 1: Display Hello World! on the OLED of the XIAO expansion board

#### - Attention -

Before starting to write a program for the OLED of the XIAO expansion board, make sure the Arduino IDE has loaded the U8g2\_Arduino library file. The loading method can be referred to the description in the "How to Download and Install Arduino Library" section of this lesson.

#### Analysis

If you just want to display "Hello World!" on the OLED, you can directly write characters with the U8x8 library. The steps are as follows:

- Declare the library file, set the constructor, and the constructor defines the display type, controller, RAM buffer size, and communication protocol.
- Initialize the display.
- Set the display font, set the print starting position, and output "Hello World!".

#### Write the program

**Step 1:** Declare the library file, set the constructor, and the constructor defines the display type, controller, RAM buffer size, and communication protocol.

```
#include <Arduino.h>
#include <U8x8lib.h>//Use U8x8 library file
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE);
//Set the constructor, define the display type, controller, RAM buffer size, and com-
munication protocol, generally determine according to the used display model
```

**Step 2:** Initialize the display. After declaring the library file in the previous step, you can use the functions in the library to set the OLED display.

```
void setup(void) {
 u8x8.begin();//Initialize u8x8 library
 u8x8.setFlipMode(1);//Flip the display 180 degrees, generally numbers 0 and 1
}
```

**Step 3:** Set the display font (there are various fonts to choose from in the u8x8 library, we can refer to <u>https://github.com/olikraus/u8g2/wiki/fntlist8x8</u> to choose), set the print starting position, and output "Hello World!".

```
void loop(void) {
 u8x8.setFont(u8x8_font_chroma48medium8_r);//Define u8x8 font
 u8x8.setCursor(0, 0);//Set the position of the drawing cursor
 u8x8.print("Hello World!");//Draw content on OLED: Hello World!
}
```

The complete program is as follows:

```
#include <Arduino.h>
#include <U8x8lib.h>//Use U8x8 library file
```

```
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE);
//Set the constructor, define the display type, controller, RAM buffer size, and com-
munication protocol, generally determine according to the used display model
void setup(void) {
 u8x8.begin();//Initialize u8x8 library
 u8x8.setFlipMode(1);//Flip the display 180 degrees, generally numbers 0 and 1
}
void loop(void) {
 u8x8.setFont(u8x8_font_chroma48medium8_r);//Define u8x8 font
 u8x8.setCursor(0, 0);//Set the position of the drawing cursor
 u8x8.print("Hello World!");//Draw content on 0LED: Hello World!
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L6\_HelloWorld\_XIAO\_en</u>

## **Program Upload**

After the program is written, we connect the XIAO main control board to the computer interface using a data cable, as shown in the image below:



Click "Upload" to transfer the program to the main control board. Once the upload is complete, check if the OLED display shows "Hello World!".

## 1.6.3 Task 2: Draw a Circle on the OLED Display

## Analysis

To draw a circle on the OLED display, we need to use the U8g2 library. Programming involves four steps:

- Declare the U8g2 library file, determine whether to use SPI or I2C protocol, and set up the constructor to connect to the OLED display.
- The draw() function uses the u8g2.drawCircle function to draw a circle on the OLED.
- Initialize the U8g2 library.
- In the loop() function, call related functions to draw images on the OLED.

## **Program Writing**

**Step 1:** Declare the **U8g2** library file, determine whether to use SPI or I<sup>2</sup>C protocol, and set up the constructor to connect to the OLED display.

```
#include<Arduino.h>
#include<U8g2lib.h>//Use U8g2 library
```

```
// Determine whether to use SPI or I2C protocol
#ifdef U8X8_HAVE_HW_SPI
#include<SPI.h>
#endif
#ifdef U8X8_HAVE_HW_I2C
#include<Wire.h>
#endif
U862_SSD1306_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);
// Set up the constructor, define display type, controller, RAM buffer size, and com-
munication protocol
```

**Step 2:** The draw() function uses the u8g2.drawCircle function to draw a circle on the OLED. The u8g2.drawCircle(x0,y0,rad,opt) function parameters are as follows:

- x0, y0: The position of the center of the circle.
- rad: Defines the size of the circle, with the diameter of the circle being 2\*rad+1.
- opt: Choose a part or all of the circle.

```
void draw(void) {
 u8g2.drawCircle(20, 25, 10, U8G2_DRAW_ALL);// Draw a full circle with a diameter
of 21 at coordinates (20, 25)
}
```

**Step 3:** Initialize the U8g2 library.

```
void setup(void) {
 u8g2.begin();// Initialize the library
}
```

**Step 4:** In the **loop()** function, call related functions to draw images on the OLED. Use the firstPage and nextPage functions to cycle through image content. They need to be used together, as shown in the program below:

```
void loop(void) {
 // Cycle through image display
 u8g2.firstPage();
 do {
 draw();// Use draw function
 } while(u8g2.nextPage());
 delay(1000);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L6\_DrawCircle\_XIAO\_en</u>

## **Uploading the Program**

After writing the program, connect the XIAO main control board to the computer using a data cable, as shown below:



Once connected, click on the "Upload" button to upload the program to the hardware. When the debugging area displays "Upload Successful", check if the OLED display screen has shown a circular pattern.



## 1.6.4 Extended Exercise

Try drawing some more complex patterns.

# Chapter 2: Project Practice for Beginners -Introduction to Prototype Design

This unit will delve into project practice with a few classic projects as case studies. We will learn how to create a quick verification prototype starting from an idea. Instead of analyzing code line by line as we've done previously, we will only explain critical steps in this unit. The focus will be more on the practical application of code. Arduino's libraries and example programs are abundant, as are community resources.

When working on a project, we should be adept at finding these resources, referring to example programs, and adjusting the code according to our needs to achieve the desired effects more quickly. Furthermore, this unit will begin to cover how to design appearances based on the effects achieved by the program. We will start by repurposing items around us, combining these items with electronic hardware to quickly form prototype works.

## 2.1 Introduction to Product Prototype Design

In the first unit, we've entered the realm of electronic hardware and programming, learning how to control electronic hardware through code to achieve desired effects, such as controlling an LED in various ways, making a buzzer sound, displaying text on an OLED screen, and more. Mastering this knowledge will help us turn the ideas in our minds into reality. In this section, we will learn about the process from an idea to a prototype and then to a product. Only when you have mastered this knowledge can you step into the world of product prototype design. If you have managed to stick with this course up to this point, there's no doubt that you are a "maker" at heart. The idea of "wanting to make something on your own" keeps swirling around in your mind. This section will provide you with some advice on how to become a maker and guidance on how to create electronic product prototype designs.

## 2.1.1 Cultivating the Maker Mindset

Becoming an excellent maker is not just about learning hardware modules and programming knowledge, but also consciously cultivating some habits.

#### Keep it playful

Play opens us to creative ideas and new experiences. While we play, we engage our bodies and our mind, and we often engage with others. While we play, learning feels natural and we can take risks to do things we didn't know we can do.

#### **Be Curious**

Ask questions – who, what, why, and how. How are things around you made? Who makes them and where are they made?

#### **Get physical**

Use your sense to experience the physical world all around you. What are the differences between the natural world and the built world?

#### Find a favorite tool

Tools exist for all kinds of applications. Given an area you're interested such as bicycles or music, what are some of the tools, both physical and digital, that you might want to learn to use? Choose a new tool and share it with us.

#### Do something you've never done before

Sometimes we decide that we're not good at something and we never try to do it. Part of the DIY spirit is to try something you've never tried before, even if you're not particularly good at



Dale Dougherty, the founder of Make: magazine, gave some advice on cultivating the maker mindset in his welcome speech at Maker Camp (refer to <u>https://makercamp.com/getstarted</u>)

it. Think of it as an experiment. See if you like it. Try cooking or gardening or playing a musical instrument. Or try to fix something that's broken. Share this new skill.

#### Make something

You might design something that solves a problem — it could be a problem for you or a problem for others. You might build something that's interactive such as a play toy, or a toy car or plane. Paper airplane launchers are popular, as are rockets.

## What are the benefits of engaging young people in making?

Here are the five key competencies that we identified as outcomes for young people who participate in Start Making!

- 1. Identify as a creator or maker. Young people develop positive attitudes toward creating hands-on projects.
- 2. Develop confidence in creative expression. Young people feel capable of bringing their ideas to life by designing, experimenting, iterating, and persisting through failures.
- 3. Acquire technical tool literacy. Young people become familiar with a variety of tools and technologies that they can use to make projects.
- 4. Become aware of STEAM. Young people become aware of ideas and concepts that bridge science, technology, engineering, art, and math and demonstrate curiosity to learn more.
- 5. Learn collaboration and networking skills. Young people actively engage in collaborating and helping others.

**Start Making! A Guide to Engaging Young People in Maker Activities** By Danielle Martin and Alisha Panjwani edited by Natalie Rusk

#### What are the attributes of a maker? What is a maker mindset?

- Makers are curious. They are explorers. They pursue projects that they personally find interesting.
- Makers are playful. They often work on projects that show a sense of whimsy.
- Makers are willing to take on risk. They aren't afraid to try things that haven't been done before.
- Makers take on responsibility. They enjoy taking on projects that can help others.
- Makers are persistent. They don't give up easily.
- Makers are resourceful. They look for materials and inspiration in unlikely places.
- Makers share—their knowledge, their tools, and their support.
- Makers are optimistic. They believe that they can make a difference in the world.

Making Makers: Kids, Tools and the Future of Innovation By AnnMarie Thomas

## 2.1.2 Enlightening on Product Prototype Design

#### Author Introduction:

Wen Yanming, a post-90s female, graduated from the Chinese University of Hong Kong and South China University of Technology, with a master's degree in law. She is a hardware product manager, an inventor, an entrepreneur, with over a decade of technology practice and maker experience.



## **Basic Process of Product Prototype Design**

From idea to product prototype and then to the product, this is a process that every product must go through. A product prototype allows us to quickly verify ideas, functionality, and product feasibility in a cost-effective way, providing the basis for product testing, optimization, and iterative updates. Behind every successful product we see, there may have been countless iterations of product prototypes. Therefore, creating a good product prototype is an essential process and solid foundation for a successful product.

The prototypes needed for different types of products and different stages of the product are not the same. When we mention a product prototype, it may refer to a conceptual prototype, a functional prototype, a small batch production prototype, a factory hand model, etc. It should be noted that for electronic hardware products, the discussion here is mainly about product prototypes for product concepts and functional implementation.

Generally speaking, the design of a functional product prototype mainly includes the following processes:

#### 1. Identify and Clarify the Problem to be Solved

Einstein once said: "Posing a problem is often more important than solving a problem." Every product must exist to solve a certain problem or to provide some benefit to people. Therefore, identifying and clarifying the problem to be solved is a prerequisite for clarifying product design needs and proceeding with product design.

It is important to note that just because we have identified a problem does not mean we truly understand and accurately define this problem. For example, over 100 years ago, when Henry Ford, the founder of Ford Motor Company, went around asking customers what kind of transportation they needed, almost everyone's answer was, "I want a faster horse." But do people really just need a faster horse? If Mr. Ford had defined the problem based on this, we might not have had faster and more comfortable cars so quickly.



#### 2. Demand Analysis and Product Definition

Once the problem is clearly defined, we can extract unmet needs from it. Like the example above, the problem at that time was actually how to get to the destination faster, so the corresponding need was "a faster mode of transportation," not "a faster horse." Therefore, we need to be good at digging deeper from the problems we discover to find the real needs. Demand analysis generally requires an analysis of the user population and use scenarios, from which to derive the functions needed to solve the problem, that is, to clarify: for whom, in what scenarios, to achieve what functions, to gain what benefits.



There are many types of needs: true user needs, superficial needs, urgent needs, ordinary needs, high-frequency needs, low-frequency needs, and so on. All of these need to be analyzed in light of the actual situation, which can then inform the correct definition of the product based on these needs.

Every product ultimately needs to be commercialized to realize its maximum value. Therefore, when designing a product for the market, we also need to conduct a series of market analyses, including market size, sales expectations, profit analysis, payback period, input-output ratio analysis, and so on.

#### 3. Hardware Selection and Assembly

For the design of electronic products, once the needs are defined, we need to find hardware that can implement these functional needs. When choosing hardware, the elements that generally need to be considered include: feasibility, level of need satisfaction, cost, volume, weight, performance, lifespan, appearance, etc. One of the most important abilities of an excellent product designer is to take into account various factors based on the product definition and needs, balance these factors, and make trade-offs. Often, there is no single correct answer.

Generally speaking, when we build a prototype, the first thing we should consider is creating a minimum viable product (MVP). Its function is to use the least resources to quickly verify the product and quickly improve and iterate.



## 4. Software Development and Functional Implementation

Many experienced software development engineers will draw a functional implementation

flowchart before software development. They will draw a functional implementation flowchart according to the functions to be implemented. This can help clarify the software design thinking, check the function logic, facilitate the identification of leaks and deficiencies, and refer to it at any time during programming, ensuring they have a clear understanding. Therefore, regardless of the complexity of software function development, it is recommended that everyone develop a good habit of drawing a functional implementation flowchart first. It can be a simple hand-drawn sketch, or a professional software like Visio, Axure can be used to draw it.



When developing software, try to be efficient and concise. Take full advantage of the benefits of the open-source community and learn to use existing hardware and software resources more effectively. For example, many pieces of hardware or applications already have many readymade open-source libraries and routines. During development, you can refer to these, comply with the corresponding open-source agreements to use related resources, and avoid wasting time reinventing the wheel.

#### 5. Prototype Testing and Optimization

After the prototype is made, we need to test it to verify its functional implementation and whether it meets the original design needs. This process should involve as many target users as possible to collect their feedback. In this way, we can better discover the defects in the product prototype, make remedial measures and improvements, update and iterate the design, and finally make a design scheme that meets user needs, laying a solid foundation for formal product design.

## Product Prototype Practice -"One Meter Distance Alarm" Prototype

Next, let's take the prototype manufacturing process of the "One Meter Distance Alarm" as an example to experience the product prototype design process.

# 1. Identifying and Defining the Problem to be Solved

At the beginning of 2020, the COVID-19 pandemic broke out globally, the situation was very severe. To prevent the virus from spreading through droplets and closerange airborne contact, governments and health departments around the world urged



everyone to reduce gatherings and maintain social distancing of at least one meter whenever possible. However, it is not easy for everyone to constantly remember this and maintain an

accurate social distance of more than one meter. For children, they often forget to maintain distance because they are playing happily, or they have no concept of how far they should keep their distance. When going out, there are also some strangers who, due to a lack of epidemic prevention awareness, unconsciously come close to us, and we need to find a polite way to remind them.

Therefore, we have derived a question from life: **How can we constantly remind people to maintain a social distance of more than one meter?** 

## 2. Needs Analysis and Product Definition

With the problem defined, let's analyze the core needs that this problem triggers: an epidemic prevention reminder device for public use that sends out reminders when others enter within one meter, thus encouraging everyone to consciously maintain a one meter social distance.

Thinking further about the core needs, what kind of reminder should this be? We can think of the electronic products we usually use, what kind of reminders do they have? They are nothing more than sounds, lights, vibrations, screen text prompts, etc. Considering that the reminder needs to be timely, direct, and obvious, it's not easy to see the screen clearly at a distance of about one meter, and the volume will be larger and the cost higher after adding a screen, so we do not consider adding a screen. The remaining options are sound, light, and vibration. We can continue to balance and choose the necessary reminder method according to the cost, volume, and appearance. There is no single answer here. So, based on the needs analysis process, we tentatively define the product as: a device that emits light and vibrates to remind when it detects someone entering within a one meter distance.

#### 3. Hardware Selection and Assembly

With the product defined, we can decompose the core functional requirements:

- 1. Detect when a person enters within a one-meter distance
- 2. Alert self and others
- 3. Small size, easy to carry

So, what kind of hardware should be used to implement these respectively? In the process of product prototype implementation, we usually choose open-source hardware with low cost, complete information, and many routines to implement hardware functions. After comprehensively considering the cost, function realization, assembly difficulty, volume, software development resources, and other elements, I have chosen the following hardware:

Functional Requirements	Hardware Product	Function Introduction
Main Board	Seeeduino XIAO (SAMD21)	This is a mini-main control board developed by Seed Technology based on SAMD21. The volume is very mini, only 20x17.5mm, the size of a thumb, the interface is rich, the performance is strong, very suitable for the development of various small volume devices.

Expansion Board	Seeed Studio Grove Base for XIAO	Grove Shield for Seeed Studio XIAO is a plug- and-play Grove extension board for Seeed Studio XIAO series. With the on-board battery management chip and battery bonding pad, you could easily power your Seeed Studio XIAO with lithium battery and recharge it. 8 Grove connectors onboard includes two Grove I2C and one UART. It acts as a bridge for Seeed Studio XIAO and Seeed's Grove system. Flash SPI bonding pad allows you add Flash to Seeed Studio XIAO to expand its memory space, providing Seeed Studio XIAO with more possibilities.
Distance Detection	Grove - Time of Flight Distance Sensor (ToF)	There are many sensors to detect distance, most of which measure through ultrasound, infrared, lasers, etc. Among them, the Grove Time of Flight Distance Sensor is a new generation of ToF laser ranging module based on VL53L0X, which can provide accurate distance measurement up to 2 meters. The small size and high precision of this module made it my first choice.
Light Alarm	Grove - Circular LED	A Grove - Circular LED with a circle of LEDs can light up a white light. It is aesthetically pleasing and provides a larger, more noticeable light reminder compared to a single LED.
Vibration Alarm	Grove - Vibration Motor	A Grove module with a built-in vibration motor. It can be used plug-and-play, and it's convenient to generate continuous or intermittent vibration reminders by controlling the digital signal.
Power Supply	3.7V lithium battery (401119)	A mini-sized 3.7V lithium battery commonly used for Bluetooth headset power supply. The model is 401119, which represents the thickness, width, and length of the battery as 4mm, 11mm, and 19mm respectively. After welding this size lithium battery to the lithium battery pad on the Grove expansion board, it can be placed directly in the gap between the Seeeduino XIAO and the Grove expansion board, making the product more tidy and beautiful.



The Grove universal connector is a standard connector for the Grove system. It can be used conveniently plug-and-play, without soldering and considering the line sequence. The Grove line connects various sensors and actuators to the expansion board, making the project building as simple as building blocks and saving a lot of time. The 5cm short line is very suitable for space-compact product prototypes.

The module connection is as follows, as depicted in the image:



The chosen hardware modules have a great structural design, which can be directly used to build the distance alarm's form factor, saving time in making a shell. Thus, the production method is quite simple: all that's needed is to connect each piece of hardware to the appropriate interface, arrange their respective positions, and then bond them together with hot melt adhesive. This quickly completes the hardware connection and form factor building of a one-meter distance alarm. The completed hardware product is as follows:



#### 4. Software Development and Function

#### Implementation

Before officially writing the program, I planned the functions and logic that the software needs to implement and drew the following functional implementation flow chart using Visio:

Because Seeeduino XIAO supports Arduino IDE, I chose to program in the Arduino IDE. Most of the hardware provided by Seed Technology is open source, and they offer excellent documentation support for their products. Thus, during the programming process, I found the corresponding open-source hardware Wiki on the <u>Seeedstudio official website</u>, downloaded the



relevant library files (note: library files are a collection of specific functionalities provided by developers that can be used by simply calling them, without having to rewrite the code), and referred to the example routines of the used modules. I completed the program swiftly.

After the program was written and compiled successfully, I connected the Seeeduino XIAO to the computer via a Type-C connection and downloaded the written code to the Seeeduino XIAO through the Arduino IDE. Once the code was successfully uploaded, the prototype was completed.



#### 5. Prototype Testing and Optimization



After completing the prototype, it was time for testing. First, I needed to test whether the prototype implemented the basic functionality, i.e., whether it would sound and light an alarm when a person was detected within a one-meter range. Then, I had to use it in an actual scenario to see if the user experience was good enough. If it could meet the product's requirements and definition satisfactorily, the product prototype could be deemed successful, and the next
step in product development could be initiated. Of course, if issues were found during testing, adjustments and improvements were required, followed by retesting. This process is repeated until the product prototype meets the requirements, and the final scheme is determined.

Finishing the prototype is just the first step in making a successful product. The birth of each product requires a lot of effort, continual trial and error, and adjustment to achieve the best results. The final success of a product, in addition to meeting user needs, also needs to withstand many market tests. This requires students, when beginning to learn to make products, to always maintain the spirit of a craftsman, while also keeping a keen sense for the market, and learning knowledge beyond the product itself. There is a long way to go, and I hope everyone can stick to their original intentions, keep exploring, and ultimately make successful products.

The source code of the program is as follows:

```
#include <Grove_LED_Bar.h>
#include "Seeed_vl53l0x.h"
const int Buzzer = 8;//Vibration motor connected to D8
Grove_LED_Bar bar(0, 1, 0, LED_CIRCULAR_24); //Grove-LED ring connected to D0
Seeed_vl53l0x VL53L0X; //Grove-tof distance sensor connected to IIC (D4/D5)
#if defined(ARDUINO_SAMD_VARIANT_COMPLIANCE) && defined(SerialUSB)
#define SERIAL SerialUSB
#else
#define SERIAL Serial
#endif
void setup() {
 bar.begin();
 pinMode(Buzzer, OUTPUT);
 digitalWrite(Buzzer, LOW); // turn the Buzzer on (HIGH is the voltage level)
 // Turn off all LEDs
 bar.setBits(0x0);
 VL53L0X_Error Status = VL53L0X_ERROR_NONE;
 SERIAL.begin(115200);
 Status = VL53L0X.VL53L0X_common_init();
 if (VL53L0X_ERROR_NONE != Status) {
 SERIAL.println("Starting VL53L0X measurement failed!");
 VL53L0X.print_pal_error(Status);
 while (1);
 }
 VL53L0X.VL53L0X_long_distance_ranging_init();
 if (VL53L0X_ERROR_NONE != Status) {
 SERIAL.println("Starting VL53L0X measurement failed!");
 VL53L0X.print_pal_error(Status);
 while (1);
 }
}
void loop() {
```

```
VL53L0X_RangingMeasurementData_t RangingMeasurementData;
 VL53L0X Error Status = VL53L0X ERROR NONE;
 memset(&RangingMeasurementData, 0, sizeof(VL53L0X_RangingMeasurementData_t));
 Status = VL53L0X.PerformSingleRangingMeasurement(&RangingMeasurementData);
 if (VL53L0X ERROR NONE == Status) {
 if (RangingMeasurementData.RangeMilliMeter >= 2000) {
 SERIAL.println("Out of range!!");
 digitalWrite(Buzzer, LOW); // turn the Buzzer off (LOW is the voltage
level)
 // Turn off all LEDs
 bar.setBits(0x0);
 }
 else if (RangingMeasurementData.RangeMilliMeter <= 1000) {</pre>
 digitalWrite(Buzzer, HIGH); // turn the Buzzer on (HIGH is the voltage
level)
 // Turn on all LEDs
 bar.setBits(0b1111111111111111111111);
 SERIAL.print("Distance:");
 SERIAL.print(RangingMeasurementData.RangeMilliMeter);
 SERIAL.println(" mm");
 }
 else {
 digitalWrite(Buzzer, LOW); // turn the Buzzer off (LOW is the voltage
level)
 // Turn off all LEDs
 bar.setBits(0x0);
 SERIAL.print("Distance:");
 SERIAL.print(RangingMeasurementData.RangeMilliMeter);
 SERIAL.println(" mm");
 }
 }
 else {
 SERIAL.print("Measurement failed!! Status code =");
 SERIAL.println(Status);
 digitalWrite(Buzzer, LOW); // turn the Buzzer off (LOW is the voltage lev-
el)
 // Turn off all LEDs
 bar.setBits(0x0);
 }
 delay(250);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L7\_tof\_XIAO\_en</u>

# 2.2 **Smart Hygrometer and Thermometer**

Thermometers and hygrometers are ubiquitous in daily life, providing real-time measurement of temperature and humidity in our environment. We frequently use them to measure body temperature when we feel feverish or unwell. The invention of these devices has brought tremendous convenience to our lives. Despite their size, these devices hold a great deal of science. In this section, we will create a smart hygrometer and thermometer using a temperature and humidity sensor. Do you know what a temperature and humidity sensor is and what it can do?

# 2.2.1 Background Knowledge

#### **Temperature**

Temperature is closely tied to our daily lives; it informs what clothes we wear before stepping out, and ensures the food or drink we consume is not too hot or too cold. When you step outside your home, you can sense the cold or heat, but to quantify exactly how cold or hot it is, we use "temperature".

Temperature is a physical quantity that indicates the degree of coldness or hotness of an object. The high and low temperature of an object is a macroscopic phenomenon that reflects the intensity of thermal motion of the molecules that make up the object at the microscopic level. Hence, the temperature is a manifestation of the intensity of thermal motion of a large number of molecules that constitute an object. The faster the molecular motion, the higher the temperature, and the hotter the object; the slower the molecular motion, the lower the temperature, and the colder the object.

To measure temperature accurately, we need to establish a temperature unit standard and design corresponding temperature measurement tools.



Cold

#### **Temperature Scale**

The unit standard for temperature is known as the temperature scale. Throughout the development of science, a variety of temperature scales have been devised, but their core methodology is the same: by stipulating the temperature values of certain phenomena or things, all other temperatures can be calibrated. Common temperature scales include Fahrenheit, Celsius, and Kelvin. Only five countries, including the United States and a few other English-speaking countries, still use the Fahrenheit scale. The vast majority of the world, including China, uses the Celsius scale. In research fields, scientists prefer to use the Kelvin scale.

- In the Fahrenheit scale, under standard atmospheric pressure, the temperature at which water begins to freeze is set at 32 degrees Fahrenheit and the temperature at which water boils is 212 degrees Fahrenheit. The scale is divided into 180 equal parts between these two points, with each part being one degree Fahrenheit, denoted as 1 °F. In the Fahrenheit scale, normal human body temperature is around 98 °F.
- In the Celsius scale, under standard atmospheric pressure, the temperature at which water begins to freeze is set at 0 degrees Celsius and the temperature at which water boils is 100 degrees Celsius. The scale is divided into 100 equal parts between these two points, with each part being one degree Celsius, denoted as 1°C. In the Celsius scale, normal human body temperature is around 36.5°C.
- The Kelvin scale is established on the basis of absolute zero. Scientists found that there is a minimum temperature in the universe, -273.15°C, which cannot be reached but only asymptotically approached. This minimum temperature was designated as absolute zero, and set as 0 Kelvin, denoted as 0K. The temperature at which water begins to freeze under standard atmospheric pressure is set at 273.15K, and the temperature at which water boils is 373.15K. In the Kelvin scale, normal human body temperature is around 309.7K.

#### Thermometer

A thermometer is a tool for measuring temperature. Since temperature is not a physical quantity that can be seen directly, the measurement of temperature requires the assistance of physical phenomena directly related to temperature. For instance, in ancient China, there is a record of 'lustrous pure blue flame,' which is measured by observing the color of the flame.

Another example is the infrared thermometer, as shown in the image to the right, which

measures temperature through the radiation differences of objects at different temperatures. Humans, like other organisms, also radiate infrared energy around them. This energy typically has a wavelength of 9-13µm and falls within the near-infrared band of 0.76-100µm. Since light within this wavelength range is not absorbed by air, the surface temperature of the human body can be accurately measured by simply measuring the infrared energy radiated by the human body. The human body infrared temperature sensor is designed and manufactured based on this principle.



Furthermore, the phenomenon of thermal expansion and contraction is often used in temperature measurement. Commonly seen thermometers and body thermometers are based on the principle of measuring temperature by the expansion and contraction of a liquid when heated or cooled. The image below shows a commonly used alcohol thermometer that measures temperature by the property of alcohol's expansion and contraction with temperature. The winter daytime temperature displayed in the image is -17°C.

# Humidity

Humidity is a physical quantity that indicates the degree of dryness in the atmosphere. Under a certain temperature, the less water vapor a certain volume of air contains, the drier the air; the more water vapor, the more humid the air. The dryness or wetness of air is called "humidity." Weather forecasts typically report humidity values in terms of relative humidity, which is a percentage obtained by comparing the actual amount of water vapor in the air to the maximum amount of water vapor the air can hold at the same temperature.

# Temperature and Humidity Sensor — Grove Temperature and Humidity Sensor V2.0 (DHT20)

As the name implies, a temperature and humidity sensor is a sensor that can detect the temperature and humidity in the environment. There are many types of temperature and humidity sensors, and the one we chose is Grove Temperature and Humidity Sensor V2.0 (DHT20). This is a low-power, highprecision, and high-stability product with a fully calibrated digital I2C interface and a temperature measurement range of -40~80°C. Temperature and humidity sensors have a wide range of applications in the fields of agriculture, environmental protection, and home life.

#### - Grove - Temperature and Humidity Sensor (DHT11) -

If you are using the Grove <u>DHT11 version</u> of the temperature and humidity sensor (with a blue sensor case), please refer to this version's <u>Wiki document</u>. DHT11 is a temperature and humidity sensor that outputs calibrated digital signals. The biggest difference between it and DHT20 is their communication method: DHT11 uses a single-bus digital signal, while DHT20 uses an I2C signal.

# 2.2.2 Task 1: Reading Temperature and Humidity Values in the Serial Monitor (Based on the DHT20 model)

# Adding the Grove\_Temperature\_And\_Humidity\_Sensor Library File

Before starting to program the Grove Temperature and Humidity Sensor with the Arduino IDE,







it is necessary to add the necessary library files for the sensor. Type the library file address in the browser address bar: <u>https://github.com/Seeed-Studio/Grove\_Temperature\_And\_Humidity\_Sensor</u>, enter the GitHub page, and click **Code→Download ZIP** to download the resource package **Grove\_Temperature\_And\_Humidity\_Sensor-master.zip** to your local machine, as shown in the image below.

C a github.com/Seeed-Studio/Grove_Temperature_And_Humidity_Sensor								
Q :	Search or jump to 🕧 Pu	Il requests issues Codespac	ces Marketplace Explore		Q +• 😍•			
G Seeed-Studio / Grove_Temperature_And_Humidity_Sensor Public 🛇 Watch 14 🗸 🦞 Fork 56 🗸 😭 Star 59 🗸								
<> Code	e ⊙ Issues 🚺 🎵 Pull requests 🤅	🕞 Actions 🗄 Projects 🖽	] Wiki 🛈 Security 🗠 Insights					
	🐉 master 👻 🏌 1 branch 🛇 3 tags		Go to file Add file *	<> Code •	About			
	IsQianGe Fixed support for XIAO_ESF	232	Local Codespac	ces (New)	Arduino library for the DHT series temperature&humidity sensors			
	examples/DHTtester	Update DHTtester.ino	E Clone	(?)				
	🗋 .gitattributes	add .gitattributes	HTTPS SSH GitHub CLI		C Readme			
	🗅 .gitignore	add .gitignore	https://github.com/Seeed-Studio/Grove	_Ter (D	MT license ☆ 59 stars			
	🗅 .gitlab-ci.yml	Seeed:Arduino: fix travis.yml v	Use Git or checkout with SVN using the web URL.		⊙ 14 watching			
	🗋 .travis.yml	Seeed:Arduino: fix travis.yml v	Open with GitHub Desktop		앟 56 forks			
	DHT.cpp	increase stability	Download ZIP		Releases 3			
	DHT.h	Fixed support for XIAO_ESP3:						
	LICENSE	add LICENSE		5 years ago	© v2.0.0 (Latest)			
	C README.md	Seeed:Arduino: Add travis buil	ld status	3 years ago	+ 2 releases			
Ibrary.properties         Pretty printed the Arduino code with astyle         3 years ago		T & 1000303						
		de with astyle 3 years ago		Packages				
	README.md				No packages published			

Add the resource package Grove\_Temperature\_And\_Humidity\_Sensor-master.zip downloaded in the previous step in the menu bar's Sketch→Include Library→Add.ZIP Library , until you see a prompt indicating the successful loading of the library.

# **Opening the "DHTtester" Example**

Once the library file has been successfully added, the DHT library can be used. The "DHTtester" example can be opened through the following path: File-Examples-Grove Temperature And Humidity Sensor-DHTtester .

#### - Attention -

If the DHTtester example is not found in the menu after installing the library files, it can be viewed by closing and reopening the Arduino IDE.

After opening the example program, we can see a program like the one shown below. This program reads the temperature and relative humidity in the environment and displays real-time data in the serial monitor. Part of the example program's code needs to be modified.

// Example testing sketch for various DHT humidity/temperature sensors
// Written by ladyada, public domain
#include "DHT.h"
// Uncomment whatever type you're using!
//#define DHTTYPE DHT11 // DHT 11
#define DHTTYPE DHT22 // DHT 22 (AM2302)
//#define DHTTYPE DHT21 // DHT 21 (AM2301)

```
//#define DHTTYPE DHT10 // DHT 10
//#define DHTTYPE DHT20 // DHT 20
/*Notice: The DHT10 and DHT20 is different from other DHT* sensor ,it uses i2c in-
terface rather than one wire*/
/*So it doesn't require a pin.*/
 // what pin we're connected to(DHT10 and DHT20 don't need define
#define DHTPIN 2
it)
DHT dht(DHTPIN, DHTTYPE); // DHT11 DHT21 DHT22
 // DHT10 DHT20 don't need to define Pin
//DHT dht(DHTTYPE);
// Connect pin 1 (on the left) of the sensor to +5V
// Connect pin 2 of the sensor to whatever your DHTPIN is
// Connect pin 4 (on the right) of the sensor to GROUND
// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor
#if defined(ARDUINO_ARCH_AVR)
 #define debug Serial
#elif defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_SAM)
 #define debug SerialUSB
#else
 #define debug Serial
#endif
void setup() {
 debug.begin(115200);
 debug.println("DHTxx test!");
 Wire.begin();
 /*if using WIO link,must pull up the power pin.*/
 // pinMode(PIN_GROVE_POWER, OUTPUT);
 // digitalWrite(PIN_GROVE_POWER, 1);
 dht.begin();
}
void loop() {
 float temp hum val[2] = \{0\};
 // Reading temperature or humidity takes about 250 milliseconds!
 // Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)
 if (!dht.readTempAndHumidity(temp_hum_val)) {
 debug.print("Humidity: ");
 debug.print(temp_hum_val[0]);
 debug.print(" %\t");
 debug.print("Temperature: ");
 debug.print(temp_hum_val[1]);
 debug.println(" *C");
 } else {
 debug.println("Failed to get temprature and humidity value.");
 }
 delay(1500);
```

Pay attention to the document's comments. The program above provides several types of temperature and humidity sensor models (DHT22 is set as default), but we need the DHT20. So, uncomment the part for DHT20 and delete the definitions for other unneeded sensor models. DHT10 and DHT20 do not require pin definitions, so the revised code after modification is as follows:

```
#include "DHT.h"
#define DHTTYPE DHT20 // DHT 20
DHT dht(DHTTYPE);
#if defined(ARDUINO ARCH AVR)
#define debug Serial
#elif defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_SAM)
#define debug Serial
#else
#define debug Serial
#endif
void setup() {
 debug.begin(115200);
 debug.println("DHTxx test!");
 Wire.begin();
 dht.begin();
}
void loop() {
 float temp_hum_val[2] = {0};
 if (!dht.readTempAndHumidity(temp_hum_val)) {
 debug.print("Humidity: ");
 debug.print(temp_hum_val[0]);
 debug.print(" %\t");
 debug.print("Temperature: ");
 debug.print(temp_hum_val[1]);
 debug.println(" *C");
 } else {
 debug.println("Failed to get temprature and humidity value.");
 }
 delay(1500);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L8\_DHTtester\_DHT20\_XIAO\_en</u>

After modifying the code, first connect the temperature and humidity sensor to the I2C interface of the XIAO expansion board, as shown below. Then connect the XIAO development board to your computer, upload the modified example program to XIAO in the Arduino IDE, and open the serial monitor in Arduino IDE. You will now be able to see the values of temperature and humidity. Try placing the sensor in different environments to observe if the temperature and humidity values change.



••	L8_DHTtester_DHT20_XIAO_en   Arduino IDE 2.1.0							
	€ 🗧	↓ Seeeduino XIAO					$\mathbf{v}$	·Ø
Ph	L8_DHTte	ster_DHT20_XIAO_en.ino						
	1	#include "DHT.h"						
	2	#define DHTTYPE DHT20 // DHT	20					
t_)	3	DHT dht(DHTTYPE);						
	4	<pre>#if defined(ARDUIN0_ARCH_AVR)</pre>						-
D-fb	5	#define debug Serial						
	6							
	7	#elif defined(ARDUINO_ARCH_SAMD	)    defined(ARD	UINO_ARCH_SA	M)			
	8	#define debug Serial						
÷.	10	#else						
	11	#endif						
Q	12	-CIUIT						
	13	void setup() {						
	14	debug.begin(115200);						
	15	<pre>debug.println("DHTxx test!"</pre>	);					
	16	Wire.begin();						
	17	dht.begin():						
	Output	Serial Monitor ×					* €	) ==
	Message	Enter to send message to 'Seeeduino >	(IAO' on '/dev/cu.usb	omodem1101')		New Line 🔻	115200 baud	*
	14:19:3	.984 -> Humidity: 57.26 %	Temperature:	27.50 *C				
	14:19:3	.562 -> Humidity: 68.78 %	Temperature:	27.78 *C				_
	14:19:40	.112 -> Humidity: 69.03 %	Temperature:	27.75 *C				
	14:19:4	.696 -> Humidity: 66.63 %	Temperature:	27.81 *C				
	14:19:43	.289 -> Humidity: 75.83 %	Temperature:	27.96 *C				- 11
	14:19:44	.866 -> Humidity: 76.35 %	Temperature:	28.22 *C				
8	14:19:40	.423 -> Humidity: 68.60 %	Temperature:	28.24 *C				
					Ln 8, Col 21	Seeeduino XIAO on /dev/cu.usbm	nodem1101 🛛 🗘 3	

It appears the temperature and humidity sensor is functioning correctly.

# Reading Temperature and Humidity Values in the Serial Monitor (Based on the DHT11 Sensor)

If you are using the Grove DHT11 Temperature and Humidity Sensor with a blue casing, parts of the program code need to be modified as follows:

**#define DHTPIN 0** needs to be modified according to the actual pin number the sensor is connected to.

**#define DHTTYPE DHT11** should be set because there are different models of temperature and humidity sensors, and you need to choose the correct one, i.e., DHT11.

The example code after modification is shown below:

```
#include "DHT.h"
#define DHTTYPE DHT11 // DHT 11
#define DHTPIN 0
DHT dht(DHTPIN, DHTTYPE);
#if defined(ARDUINO_ARCH_AVR)
 #define debug Serial
#elif defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_SAM)
 #define debug SerialUSB
#else
 #define debug Serial
#endif
void setup() {
 debug.begin(115200);
 debug.println("DHTxx test!");
```

```
Wire.begin();
 dht.begin();
}
void loop() {
 float temp_hum_val[2] = {0};
 if (!dht.readTempAndHumidity(temp_hum_val)) {
 debug.print("Humidity: ");
 debug.print(temp_hum_val[0]);
 debug.print(" %\t");
 debug.print("Temperature: ");
 debug.print(temp_hum_val[1]);
 debug.println(" *C");
 } else {
 debug.println("Failed to get temprature and humidity value.");
 delay(1500);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L8\_DHTtrster\_DHT11\_XIAO\_en</u>

After modifying the code, first connect the temperature and humidity sensor to the A0 port of the XIAO expansion board, as shown in the figure below. Then, connect the XIAO development board to the computer, upload the modified example program to XIAO in the Arduino IDE, and open the serial monitor in the Arduino IDE to see the values of temperature and humidity. You can place the temperature and humidity sensor in different environments to see if the temperature and humidity values will change.



# 2.2.3 Project Creation: Smart Temperature and Humidity Meter

#### **Project Description**

We are going to make a portable mini temperature and humidity detector that detects temperature and humidity values through a temperature and humidity sensor and displays the values on the OLED display of the XIAO expansion board. However, it is not rich enough to have only the display function. We can add a buzzer alarm function. When the detected temperature and humidity exceed a certain range, an alarm will be sounded as a reminder. The value range can be adjusted according to different application scenarios. For example, in a home life scenario, set a comfortable temperature and humidity range based on human feelings; or use it in plant planting places, set the temperature and humidity value range based on suitable plant growth, exceed the alarm, and remind people to adjust.

# **Program Writing**

Referencing the example program above, one of the effects we want to achieve is to display the temperature and humidity values on the OLED display of the XIAO expansion board. The code for reading the temperature and humidity sensor detection values can be reused by just changing the display medium. In combination with Section 1.6, we have learned how to display characters on the OLED, so we just need to add an if...else condition judgment statement to judge the temperature and humidity values. The program writing idea is as follows:

- Declare the DHT.h library, U8x8 library, etc., and connect the buzzer pin as a reminder to sound the device.
- Initialize the library file, define the buzzer pin state.
- Define temperature and humidity variables to store readings and display them on the OLED screen, add logical judgment, and implement buzzer alarm.

To facilitate understanding and implementation, we divide the program implementation into two tasks:

- 1. Detect temperature and humidity and display them on the OLED screen of the XIAO expansion board.
- 2. Add alarm function.

# Task 1: Use the Grove DHT20 sensor to detect temperature and humidity and display them on the OLED screen of the XIAO expansion board

Step 1: Headers, declare the library files to be called.

```
#include "DHT.h"
#include "DHT.h" //Use DHT library
#include <Arduino.h>
#include <U8x8lib.h> //Use u8x8 library
#define DHTTYPE DHT20
DHT dht(DHTTYPE); //DHT20 does not need to define pins
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE); //Setup con-
structor to connect to OLED screen
```

**Step 2:** Initialize the DHT library and the u8x8 library.

```
void setup() {
 Wire.begin(); //Initialize wire library, and join I2C network
 dht.begin(); //DHT starts working
 u8x8.begin(); //u8x8 starts working
 u8x8.setPowerSave(0); //Turn off power saving mode, 1 is on, and nothing can be
 seen on the screen after power saving mode is on
 u8x8.setFlipMode(1);
}
```

**Step 3:** Define temperature and humidity variables to store readings, read temperature and humidity values and display them on the OLED screen. Pay attention to the coordinate positions of temperature and humidity display.

```
void loop() {
 float temp, humi; //Set the variables temp and humi to floating point type, rep-
resenting temperature and humidity respectively
 temp = dht.readTemperature(); //Read temperature value and store it in temp
 humi = dht.readHumidity(); //Read humidity value and store it in humi
 u8x8.setFont(u8x8_font_chroma48medium8_r); //Set display font
 u8x8.setCursor(0, 33); //Set the position of the drawing cursor (0,33)
```

```
u8x8.print("Temp:"); //Display Temp at the position (0,33)
u8x8.print(temp); //Display real-time temperature value
u8x8.print("C"); //Display the unit "C" of temperature
u8x8.setCursor(0,50);
u8x8.print("Humidity:");
u8x8.print("Humidity:");
u8x8.print(humi);
u8x8.print("%");
u8x8.refreshDisplay();
delay(200);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L8\_dht20\_tem\_humi\_XIAO\_en</u>

**Step 4:** Connect the hardware, upload the program Connect the temperature and humidity sensor to the I2C interface of the XIAO expansion board, as shown in the figure:

Use the data cable to connect XIAO to the computer, click the "upload" button in the Arduino IDE, and upload the program to the hardware. When the debugging area shows "upload successful", you can observe whether the temperature and humidity values are displayed on the OLED screen, and you can hold the black part of the sensor with your palm to observe whether the values change.



# Task 2: Add an alarm function

**Step 1:** Add alarm function code. The alarm function requires a buzzer to be integrated into the circuit, which can be facilitated using the on-board buzzer of the XIAO expansion board. The program needs to set the buzzer pin state, add a part for condition judgment - when the temperature exceeds a certain value or the humidity falls below a certain value, the buzzer will sound an alarm. Here, a logical expression needs to be written using the "&&" logical operator "and".

#### **Boolean Operators**

&&: Logical AND, represents "and", if (expression1 && expression2), only when all expressions in the parentheses are true will it execute the statements in if {}.

||: Logical OR, represents "or", if (expression1 || expression2), if either of the expressions are satisfied, the entire expression is true, and the statements in if {} are executed.

*!:* Logical NOT, represents "not", if (!expression1), only when the value of expression1 in the parentheses is false will it execute the statements in if {}.

#### Usage example:

When the temperature exceeds 30 or the humidity falls below 40, satisfying either condition will make the buzzer sound an alarm.

```
if (temp > 30 || humi < 40) {
 tone(buzzerPin, 200, 200);
}</pre>
```

The added part of the program mainly sets the buzzer and makes decisions based on temperature and humidity, controlling the buzzer to make a sound.

```
// Part of the program, will not run
int buzzerPin = A3; // Connects the buzzer to pin A3
void setup() {
 pinMode(buzzerPin , OUTPUT); // Sets the buzzer pin as output
}
void loop() {
 float temp, humi;
 temp = dht.readTemperature();
 humi = dht.readHumidity();
 if (temp > 30 || humi < 40) { // When the temperature exceeds 30 or the humidi-
ty falls below 40, satisfying either condition will make the buzzer sound an alarm.
 tone(buzzerPin, 200, 200);
 }
```

Add the above code to the corresponding location of the Task 1 program to realize all functions. The complete program is shown below:

```
#include "DHT.h" // Use DHT library
#include <Arduino.h>
#include <U8x8lib.h> // Use u8x8 library
#define DHTTYPE DHT20
DHT dht(DHTTYPE); // DHT20 does not require pin definition
int buzzerPin = A3;
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE); // Set construc-
tor to connect OLED display
void setup() {
 pinMode(buzzerPin , OUTPUT); // Set buzzer pin to output mode
 Wire.begin(); // Initialize Wire library and join to I2C network
 dht.begin(); // DHT begins operation
 u8x8.begin(); // u8x8 begins operation
 u8x8.setPowerSave(0); // Disable power save mode, 1 is enable. After enabling
power save mode, nothing will be seen on the screen
 u8x8.setFlipMode(1);
}
void loop() {
 float temp, humi; // Set variables temp and humi to floating point type, repre-
senting temperature and humidity respectively
 temp = dht.readTemperature(); // Read temperature value and store it in temp
 humi = dht.readHumidity(); // Read humidity value and store it in humi
 if (temp > 30 || humi < 40) { // When the temperature is above 30 or the humid-
ity is below 40, if either condition is met, the buzzer will sound an alarm
 tone(buzzerPin, 200, 200);
 }
 u8x8.setFont(u8x8_font_chroma48medium8_r); // Set display font
 u8x8.setCursor(0, 33); // Set the position of the drawing cursor (0,33)
 u8x8.print("Temp:"); // Display "Temp:" at the position (0,33)
 u8x8.print(temp); // Then display the real-time temperature value
 u8x8.print("C"); // Then display the unit of temperature "C"
 u8x8.setCursor(0,50);
 u8x8.print("Humidity:");
 u8x8.print(humi);
 u8x8.print("%");
```

```
u8x8.refreshDisplay();
delay(200);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L8\_dht20\_alarm\_XIAO\_en</u>

#### Step 2: Upload the program.

After writing the program, connect the XIAO main control board to the computer using a data cable, as shown in the image below:



After connection, click the "Verify" button to check the program. If the verification is successful, click the "Upload" button to upload the program to the hardware. When the debugging area shows "Upload Successful", it is complete. To verify whether the alarm function runs smoothly, tightly grip the temperature and humidity sensor with your hand, observe the value change on the OLED display, and listen for the buzzer alarm when the temperature exceeds 30°C.

# Task 2-2: Use Grove DHT11 sensor to display temperature and humidity on the XIAO extension board's OLED and add an alarm function.

For the Grove DHT11 sensor with a blue casing, the program is shown below:

```
#include "DHT.h"//Use DHT library
#include <Arduino.h>
#include <U8x8lib.h>//Use u8x8 library
#define DHTPIN 0
#define DHTTYPE DHT11//Specify using DHT11
DHT dht(DHTPIN, DHTTYPE);
int buzzerPin = A3:
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE);//Set constructor
to connect OLED display
void setup() {
 pinMode(buzzerPin , OUTPUT);//Set buzzer pin to output mode
 Wire.begin();//Initialize wire library and join to I2C network
 dht.begin();//DHT begins operation
 u8x8.begin();//u8x8 begins operation
 u8x8.setPowerSave(0); //Disable power save mode, 1 is enable. After enabling pow-
er save mode, nothing will be seen on the screen
 u8x8.setFlipMode(1);
}
void loop() {
 float temp, humi;//Set variables temp and humi to floating point type, representing
temperature and humidity respectively
```

```
temp = dht.readTemperature();//Read temperature value and store it in temp
 humi = dht.readHumidity();//Read humidity value and store it in humi
 if (temp > 30 || humi < 40) { //When the temperature is above 30 or the humidity
is below 40, if either condition is met, the buzzer will sound an alarm
 tone(buzzerPin, 200, 200);
 }
 u8x8.setFont(u8x8 font chroma48medium8 r);//Set display font
 u8x8.setCursor(0, 33);//Set the position of the drawing cursor (0,33)
 u8x8.print("Temp:");//Display "Temp:" at the position (0,33)
 u8x8.print(temp);//Then display the real-time temperature value
 u8x8.print("C");//Then display the unit of temperature "C"
 u8x8.setCursor(0,50);
 u8x8.print("Humidity:");
 u8x8.print(humi);
 u8x8.print("%");
 u8x8.refreshDisplay();
 delay(200);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L8\_dht11\_alarm\_XIAO\_en</u>

# 2.2.4 Appearance Design

Starting from this section, we will add the part of appearance design, beginning to explore the complete prototype product manufacturing. Initially, we can try to draw design sketches and make a simple modification with the materials at hand. Returning to the smart temperature and humidity meter in this section, please design the appearance of the prototype work based on the product characteristics and functions.

Product Name	Smart Temperature and Humidity Meter
Product Features	Small, portable, high sensitivity.
Product Functions	Real-time display of temperature and humidity values, and emits an alarm when temperature and humidity values exceed the comfortable range.
Product Appearance	(For example, made into a pendant to hang on the backpack that is carried around, stick on the tissue storage box in the bedroom, etc.)

# **Case reference**





# 2.3 Surprise Gift Box Based on Light Sensor

Are you thinking about gifting a special birthday present to your friend? Instead of buying one, you can create it with the modules we have at hand. In this section, we are going to create a surprise gift box for a good friend. What kind of surprise will appear when the gift box is opened? What kind of modules do we need to complete such a surprise gift box? Start today's class with these questions.

# 2.3.1 Background Knowledge

# **Light Sensor**

Light sensors can detect the light intensity in the surrounding environment and convert the detected light energy into electrical energy. Light sensors are divided into types such as photoresistive, photodiode, and photoelectric transistor. Here, we will simply introduce two commonly used light sensors, photoresistive and photodiode.

#### **Photoresistive Type**

Firstly, the photoresistive type, its module will integrate a photoresistor, as shown below. The photoresistor is extremely sensitive to light, any light visible to our eyes can cause its reaction. High-intensity light will cause the resistance value to decrease, and low-intensity light will cause the resistance value to increase. By adjusting the resistance value in the circuit through the light intensity, it can control other devices, such as controlling the LED light on and off.

#### Photodiode Type

Photodiodes, also known as photoelectric sensors or photodetectors, when a beam of light hits the diode, the electrons in the tube will quickly scatter to form electron holes, thereby causing current to flow. The stronger the light, the stronger the current. Since the current generated by the photodiode is proportional to the intensity of light, it is very beneficial for light detection that requires a rapid change in light response. The light sensor we are going to use in this lesson is of this type.



Talking about the uses of light sensors, we can build a light-controlled switch through a light sensor, such as controlling the light on and off through a light sensor, turning off the light during the day, and turning on the light at night. The main purpose of the light control device is to save energy, improve efficiency through intelligent automation, the most common in life is probably the light control light, light control desk lamp, light control street lamp, highway tunnel lighting, etc., bringing convenience to our life and also contributing to environmental protection and energy conservation.



# **RGB LED Strip**

The project in this class is paired with an RGB LED strip. The strip integrates multiple color-adjustable light beads. Compared with a single LED, it can achieve more lighting effects and cool visual impacts, making it ideal for creating surprises. RGB LED strips come in various styles and models. The one we are going to use is the <u>Grove - WS2813 RGB LED Strip</u>, 30-bead model. We can control the RGB LED strip to achieve a rich lighting effect through programming, and build more interesting lighting projects.



# 2.3.2 Task 1: Light up RGB LED Strip To get started with RGB LED strips, start by installing and understanding its library.

# Add the Adafruit\_NeoPixel Library

Before starting to program the RGB LED strip with the Arduino IDE, you need to add the necessary library files. Enter the library file address <u>https://github.com/adafruit/Adafruit\_NeoPixel</u> in the browser address bar, enter the GitHub page, click Code→Download ZIP to download the resource package Adafruit\_NeoPixel\_master.zip to your local machine.

Q Search or jump t	0 / Pull reque	sts Issues Codespaces Ma	rketplace Explore		Q +- 😚-			
adafruit / Adafruit_	Q adafruit / Adafruit_NeoPixel Public 🔹 🖞 Ferk 128 🔹 🔆 Star 238 🔹							
○ Code ⊙ Issues 68	🔿 Code 📀 Issues 🕫 🏦 Pull requests 18 💿 Actions 🗄 Projects 💿 Security 🗠 Insights							
	P master - P 6 branches © 52	tags	Go to file	Add file • Code •	About			
	evaherrada Update Claction versions		Local Codespaces		Arduino library for controlling single-wire LED pixels (NeoPixel, WS2812, etc.)			
	github	Update CI action versions	Clone	0	arduino-library			
	examples	Fixed infinite loop in strandter	HTTPS SSH GitHu	CLI	C Readme			
	gitignore	Daxygen WIP	https://github.com/ada	fruit/Adafruit_NecoP	藝 LGPL-3.0 license			
	Adafruit_NeoPixel.cpp	Fix unused var	Use Git or checkout with SVN	using the web URL.				
	Adafruit_NeoPixel.h	Add str2order(), fix comment	() Open with GitHub Des	ktop	Y 1.2k forks			
	CONTRIBUTING.md	[Documentation]	-		Report repository			
	COPYING	Update COPYING	Download ZIP					
	README.md	Update README		6 months ago	Releases 52			
	🗅 esp.c	Fix build with older ESP-IDF v	versions	2 years ago	1.11.1 - Updated CI Actions ve (Latest)     6 days and			
	esp8266.c	Update esp8266.c		2 years ago	+ 51 releases			
	kendyte_k210.c	updates		3 years ago				
	keywords.txt	More inconsequential formatt	ting	4 years ago	Packages			
	library.properties	Add str2order(), fix comment	, bump version	3 months ago	No packages published			
	rp2040_pio.h	clang and add tinyusb		2 years ago				
				Contributors 67				
		ary CI passing Docs Doxygen		8 7 9 9 8 9 1 0 1 9 4 0				

Next, add the resource package Adafruit\_NeoPixel-master.zip downloaded in the previous step via the menu bar Sketch→Include Library→Add .ZIP Library until you see the library loaded successfully.

# **Open the Simple Example**

You can open the simple example through the following path: File → Examples → Adafruit NeoPixel → simple. Once the example program is opened, we can see the following program:

// NeoPixel Ring simple sketch (c) 2013 Shae Erisson
// Released under the GPLv3 license to match the rest of the
// Adafruit NeoPixel library

```
#include <Adafruit_NeoPixel.h>
```

```
#ifdef __AVR__
#include <avr/power.h> // Required for 16 MHz Adafruit Trinket
#endif
// Which pin on the Arduino is connected to the NeoPixels?
 6 // On Trinket or Gemma, suggest changing this to 1
#define PIN
// How many NeoPixels are attached to the Arduino?
#define NUMPIXELS 16 // Popular NeoPixel ring size
// When setting up the NeoPixel library, we tell it how many pixels,
// and which pin to use to send signals. Note that for older NeoPixel
// strips you might need to change the third parameter -- see the
// strandtest example for more information on possible values.
Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
#define DELAYVAL 500 // Time (in milliseconds) to pause between pixels
void setup() {
 // These lines are specifically to support the Adafruit Trinket 5V 16 MHz.
 // Any other board, you can remove this part (but no harm leaving it):
 #if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
 clock_prescale_set(clock_div_1);
 #endif
 // END of Trinket-specific code.
 pixels.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)
}
void loop() {
 pixels.clear(); // Set all pixel colors to 'off'
 // The first NeoPixel in a strand is #0, second is 1, all the way up
 // to the count of pixels minus one.
 for(int i=0; i<NUMPIXELS; i++) { // For each pixel...</pre>
 // pixels.Color() takes RGB values, from 0,0,0 up to 255,255,255
 // Here we're using a moderately bright green color:
 pixels.setPixelColor(i, pixels.Color(0, 150, 0));
 pixels.show(); // Send the updated pixel colors to the hardware.
 delay(DELAYVAL); // Pause before next pass through loop
 }
}
```

This program allows the strip to light up 30 beads (green light) in sequence. This is a simple light strip example, and we need to modify some parameters:

**#define PIN 0**, you need to modify the pin connected to the light strip according to the actual situation. It is connected to the A0 interface of the XIAO expansion board, so it is **PIN 0**.

**#define NUMPIXELS 30**, defines the number of LEDs in the light strip. Since the light strip has different models and the number of integrated beads is different, we use a light strip with 30 beads, so it is **NUMPIXELS 30**.

After modifying the parameters, you can remove the English comments for a clearer view of the code. It occupies a large amount of space.

```
#include <Adafruit_NeoPixel.h> // Header file, declaring the library
#ifdef AVR
#include <avr/power.h>
#endif
#define PIN 0 // The light strip is connected to pin 0. If you are using XIAO RP2040,
please change 0 to A0
#define NUMPIXELS 30 // The number of LED lights on the light strip
Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); // Create a new
light strip object, define data mode
#define DELAYVAL 500 // The interval time for each light to light up
void setup() {
 #if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
 clock_prescale_set(clock_div_1);
 #endif
 pixels.begin(); // The light strip is ready to output data
}
void loop() {
 pixels.clear(); // All beads on the light strip are turned off
 for(int i=0; i<NUMPIXELS; i++) {</pre>
 pixels.setPixelColor(i, pixels.Color(0, 150, 0)); // Light up the beads in
sequence, the color is green
 pixels.show(); // Display the light strip
 delay(DELAYVAL);
 }
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L9\_NeoPixel30\_simple\_XIAO\_en</u>

In the code above, pixels.Color(0,150,0) is a function to set the color of the LED light strip. The numbers in the parentheses represent the three primary colors (red, green, blue) respectively. If it is (0,150,0), it means that the brightness of red is 0, the brightness of green is 150, and the brightness of blue is 0. The entire light strip will show a green effect. The larger the number, the brighter it will be, with a maximum of 255. Next, connect the light strip to the A0/ D0 interface of the XIAO expansion board, as shown in the following figure:

Connect the XIAO main board to the computer with a data cable, and upload the program to the main board. After the upload is successful, observe the effect of the light strip.



The light strip can change color, flicker, and present various lighting effects such as breathing. We can refer to the sample program in the library: **File**  $\rightarrow$  **Example**  $\rightarrow$  **Adafruit NeoPixel**  $\rightarrow$  **buttoncycler**. This sample program switches different lighting effects on the light strip through buttons. We can find the code for various lighting effects in it, such as flickering, rainbow lights, chasing, etc.

# 2.3.3 Project Making: Surprise Gift Box

#### **Project Description**

The program for the surprise gift box wants to realize: Use a light sensor to control the on and off of the RGB LED light strip, just like a light-controlled lamp, but the effect is opposite. When the value detected by the light sensor is less than a fixed value, that is, it is in a dim environment, the RGB LED light strip is off. When the value detected by the light sensor is greater than a fixed value, that is, in a bright environment, the RGB LED light strip lights up the rainbow light.

### **Program Writing**

The program writing idea is as follows:

- Declare the files to be called, create a new light strip object, define the sensor pin and the number of LEDs on the light strip.
- Initialize the light strip and set the light sensor pin mode.
- Read the light value. If the light value is greater than 100, the light strip will present a rainbow and breathing light effect. Otherwise, the light strip will turn off.

The program is completed in two tasks:

# Task 1: Make the Light Strip Present Rainbow and Breathing Light Effect

**Step 1**: Declare the files to be called, declare the light strip object, and define the pin and the number of LEDs on the light strip.

```
#include <Adafruit_NeoPixel.h> // Header file, declaring the library
#ifdef __AVR__
#include <avr/power.h>
#endif
#define PIXEL_PIN 0 // The light strip is connected to pin A0. If you are using XIA0
RP2040, please change 0 to A0
#define PIXEL_COUNT 30 // The number of LED lights on the light strip
Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN, NE0_GRB + NE0_KHZ800);
// Declare a new light strip object and define the data mode
```

Step 2: Initialize the light strip.

```
void setup() {
 strip.begin(); // Initialize the light strip, the light strip is ready to output
data
}
```

**Step 3**: The light strip presents a rainbow and breathing light effect. This part uses the for() function to present the breathing effect. For example, for(i = 0; i < 5; i + +){} means that the initial value of i is 0, when i is less than 5, the statement in the loop body {} is run, each time the loop is run, i is incremented by 1. This loop will run 5 times.

```
void loop() {
 strip.clear();// Turn off all the lights on the light strip
 rainbow(10);// The light strip displays a rainbow light effect. The number in
```

```
the parenthesis represents the speed of the rainbow light circulation. The smaller
the number, the faster the circulation speed
}
// The following is the code for the rainbow light effect, presenting the breathing
light effect. This code can be found in the example program buttoncycler
void rainbow(int wait) {
 for(long firstPixelHue = 0; firstPixelHue < 3*65536; firstPixelHue += 256) {
 for(int i=0; i<strip.numPixels(); i++) {
 int pixelHue = firstPixelHue + (i * 65536L / strip.numPixels());
 strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)));
 }
 strip.show(); // The light strip presents a light effect
 delay(wait); // Delay
 }
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L9\_Rainbow\_XIAO\_en</u>

**Step 4**: Connect the hardware and upload the program. First, connect the RGB LED light strip to the A0/D0 interface of the XIAO expansion board, as shown in the figure:





Use a data cable to connect XIAO to the computer, click the "Upload" button, and upload the program to the hardware. When the debugging area shows "Upload successful", you can observe the light effect of the light strip.

# **Task 2: Adding Light Control Switch Function**

Step 1: Add code.

The added function is mainly to read the light value detected by the light sensor, and use the **if...else..** statement to judge the light value. When it is greater than 100 (this value can be adjusted according to the actual environment), the RGB LED light strip will show a rainbow breathing light effect.

Part of the program added:

```
// This is an added part of the program, it cannot run directly
#define LIGHT_PIN 7// Define the light sensor connected to A7. If you are using XIA0
RP2040, please change 7 to A3. If you are using XIA0 BLE, please change 7 to 5
#define PIXEL_PIN 0// Define light strip. If you are using XIA0 RP2040, please change
0 to A0
int readValue = 0;// Define the variable readValue to store the light value
void setup() {
 pinMode(LIGHT_PIN , INPUT); // Set the pin of the light sensor as input status
}
void loop() {
 readValue = analogRead(A7);// Read the analog value of the A7 pin light and
store it in the readValue variable. If you are using XIA0 RP2040, please change A7
```

```
to A3. If you are using XIAO BLE, please change A7 to A5
 if(readValue > 500){ // Condition judgment, if the light value is greater than
500, then the light strip presents a rainbow light effect, otherwise, the light
strip is turned off
 rainbow(10);
 }else {
 strip.clear();
 strip.show();
 }
}
```

We add the entered statement to the corresponding position of Task 1's program. See the complete program:

```
#include <Adafruit_NeoPixel.h>// Header file, declare library
#ifdef __AVR_
#include <avr/power.h>
#endif
#define LIGHT_PIN 7// Define the light sensor connected to A7. If you are using XIAO
RP2040, please change 7 to A3. If you are using XIAO BLE, please change 7 to 5
#define PIXEL_PIN 0 // The light strip is connected to the A0 pin. If you are using
XIAO RP2040, please change 0 to A0
#define PIXEL_COUNT 30 // The number of LEDs on the light strip
int readValue = 0;// Define variable readValue to store light values
Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800);
// Declare the light strip object and define the data mode
void setup() {
 strip.begin(); // Initialize the light strip and prepare the light strip to output
data
 pinMode(LIGHT_PIN , INPUT); // Set the pin of the light sensor to input state
}
void loop() {
 strip.clear();// Turn off all the beads on the light strip
 rainbow(10);// The light strip shows a rainbow light effect. The number in the pa-
rentheses represents the speed of the rainbow light rotation. The smaller the num-
ber, the faster the rotation speed
 readValue = analogRead(A7);// Read the analog value of the light on the A7 pin and
store it in the readValue variable. If you are using XIAO RP2040, please change A7
to A3. If you are using XIAO BLE, please change A7 to A5
 if(readValue > 500){ // Conditional judgment, if the light value is greater than
500, then the light strip presents a rainbow light effect, otherwise, the light
strip is turned off
 rainbow(10);
 }else {
 strip.clear();
 strip.show();
 }
// The following is the code for the rainbow light effect, presenting the breathing
light effect, this code can be found in the sample program buttoncycler
void rainbow(int wait) {
 for(long firstPixelHue = 0; firstPixelHue < 3*65536; firstPixelHue += 256) {
 for(int i=0; i<strip.numPixels(); i++) {</pre>
 int pixelHue = firstPixelHue + (i * 65536L / strip.numPixels());
 strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)));
 strip.show(); // The light strip presents a light effect
```

delay(wait); // Delay
}

Get this program from Github <u>https://github.com/mouseart/</u> XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L9\_ <u>StripLight\_XIAO\_en</u>

**Step 2**: Connect the hardware and upload the program. First, connect the RGB LED light strip to the A0 interface of the XIAO expansion board, and connect the light sensor to the A7 interface, as shown in the figure below:

#### - Attention -

}

If you are using XIAO BLE, please connect the light sensor to the I2C interface of the XIAO expansion board.

If you are using XIAO RP2040, due to the limited number of pins exposed, you need to connect the SIG pin of the light sensor and the A3 pin of XIAO RP2040 with Dupont wires on your own.

Next, connect XIAO to your computer with a data cable, click the "Upload" button in the Arduino IDE to upload the program to the hardware. When the debugging area shows "Upload successful", you can cover the light sensor with your hand, then release the light sensor, and observe the changes in the light strip. Note that because it takes a certain amount of time for the light strip to display light effects, the light strip will not turn off immediately when you cover the light sensor.

# 2.3.4 Exterior Design

Combining the program design of the surprise gift box, when the light sensor is in a dim environment, the RGB LED light strip is off, and when the light sensor is in a bright environment, the RGB LED light strip lights up with rainbow lights. We can imagine that the electronic part is placed in a closed box, which can match the function implemented by the program and can also meet the positioning of the gift. Of course, you can also have other designs.

Product Name	Surprise Gift Box
Product Features	Cool light effects, photocontrol, surprise, birthday
Product Functions	Control the lighting of the RGB LED light strip with a light sensor
Product Appearance	

#### **Case reference**







# 2.4 Rhythmic Dance with a Triaxial Accelerometer

When we use smartphones or tablets, we notice that the screen display automatically flips depending on whether the device is vertical or horizontal. In racing or flying games, phones and tablets can be used as steering wheels, with turning accomplished by tilting the device. Increasingly popular drones, for the most part, can now fly more and more steadily by detecting and controlling the attitude of the aircraft. All of these feats are thanks to the triaxial accelerometer. In this section, we will learn to use programming to retrieve data from a triaxial accelerometer and use this data for display and control.

# 2.4.1 Background Knowledge

# **Triaxial Accelerometer**

As people pay more and more attention to their health, an increasing number of people are starting to wear wristbands, pedometers, or use smartphones to record their steps, which has become a lifestyle habit for many. So how exactly does a pedometer work? The answer lies in a tiny chip called a triaxial accelerometer which is usually found in modern phones or wristbands and is the key component in step counting. An accelerometer is a sensor capable of measuring acceleration. It usually consists of a mass, a damper, an elastic element, a sensitive element, and an adjustment circuit. During acceleration, the sensor measures the inertial force applied to the mass, and uses Newton's second law to determine acceleration. Depending on the different sensitive elements of the sensor, common accelerometers include capacitive, inductive, strain, piezoresistive, piezoelectric, and others.

The capacitive accelerometer, based on the principle of capacitance, is a common type of accelerometer and is indispensable in certain fields, such as safety airbags, mobile devices like phones, etc. Capacitive accelerometers employ Micro-Electro-Mechanical Systems (MEMS) technology, which makes them very economical when mass-produced, thus ensuring low cost.



# **Applications of Accelerometers**

Accelerometers can help robots understand their environment. Are they climbing a hill? Or going downhill, or have they fallen? For balance cars or drones, accelerometers can help them maintain balance. In addition to everyday areas like smartphones and health wristbands, accelerometers have also found wide application in other fields.

Accelerometers in seismic probe design: Seismic detectors are special sensors used for geological exploration and engineering measurements. They are sensors that convert ground vibration into electrical signals, turning ground movement caused by seismic waves into electrical signals, which are then converted into binary data through an analog/ digital converter, organized, stored, and processed.

**Monitoring high-voltage line dancing:** Currently, domestic monitoring of line dancing mainly adopts two main technical schemes: video image acquisition and motion acceleration measurement. The former requires high reliability and stability of video equipment under high-temperature, high-humidity, severe cold, dense fog, dust storms, and other weather conditions, and the effects of the video images taken will also be affected. Hence, it can only serve as auxiliary monitoring means and cannot quantitatively analyze line motion

parameters. Using an accelerometer to monitor line dancing allows for quantitative analysis of the up-and-down vibration and left-right swing of transmission lines at a certain point, but it can only measure the amplitude and frequency of line linear motion and not accurately measure complex circular motion.

**Automotive Safety:** Accelerometers are mainly used in automotive safety airbags, anti-lock braking systems, traction control systems, and other safety features. In safety applications, the rapid response of the accelerometer is crucial. It must be quickly determined when a safety airbag should deploy, so the accelerometer must respond instantly. A sensor design that can quickly reach a stable state rather than continuing to vibrate can shorten the device's response time.

**Drones:** Accelerometers are also key components of drone control, positioning, and stability.

**Game Control:** Accelerometers can detect changes in the tilt angles up, down, left, and right, so it becomes straightforward to control the directions of objects in games by tilting handheld devices forward and backward. Many new game console controllers and VR device controllers incorporate accelerometers.

**Image Auto-flip:** Accelerometers detect the rotation movements and directions of handheld devices, making the displayed images upright.

**Compensation for GPS Navigation System Blind Spots:** GPS systems determine an object's location by receiving signals from three satellites distributed at 120 degrees. In special circumstances and terrains, like tunnels, dense buildings, jungle areas, GPS signals may weaken









or even be completely lost, creating blind spots. By adding an accelerometer and using inertial navigation we previously mentioned, we can measure system dead zones. By integrating the accelerometer once, we change it into the speed change per unit time, thereby measuring the movement of an object in the dead zone.

**Pedometer Function:** Accelerometers can detect AC signals and object vibrations. When people walk, they produce regular vibrations, and the accelerometer can detect the zero crossing of the vibrations, thereby calculating the number of steps walked or run, and thus calculating the displacement moved by the person. Using certain formulas, we can also calculate the calories burned.

**Image Stabilization and Shooting Stabilizers:** The image stabilization function uses an accelerometer to detect the vibration/swing amplitude of handheld devices, and when the vibration/swing amplitude is too large, it locks the camera shutter to ensure the images taken are always clear. The shooting stabilizer uses an accelerometer to maintain the stability of the entire device.

**Hard Drive Protection:** By detecting the state of free fall with an accelerometer, necessary protection can be implemented for hard drives. It is well known that when a hard drive is reading data, the gap between the read/write head and the platter is minuscule, and even minor external vibrations can have severe consequences for the hard drive, leading to data loss. By using an accelerometer, the state of free fall can be detected. When the state of free fall is detected, the read/write head is reset to reduce the extent of hard drive damage.

# **Grove Three-Axis Accelerometer**

In our kit, we have a three-axis accelerometer module - <u>Grove</u> <u>Three-Axis Accelerometer Module</u>. This tiny, incredible threeaxis accelerometer supports I2C, SPI, and ADC GPIO interfaces, which means you can choose any way to connect to your development board. Additionally, the accelerometer can also monitor the surrounding temperature to adjust for errors caused by it.











# 2.4.2 Task1: Reading Values from the XYZ Axes of the Three-Axis Accelerometer

The key to using a three-axis accelerometer for project creation is learning how to read the values of the X, Y, Z axes of the accelerometer.

#### Add the <u>Seeed\_Arduino\_LIS3DHTR</u> Library

Before starting to program the Grove Three-Axis Accelerometer with the Arduino IDE, it is necessary to add the required library for the sensor. Enter the library address <u>https://github.</u>

<u>com/Seeed-Studio/Seeed\_Arduino\_LIS3DHTR/</u> in the browser address bar, enter the GitHub page, click Code→Download ZIP to download the resource package Seeed\_Arduino\_LIS3DHTRmaster.zip to local, as shown in the figure below.

🗢 🌑 🚳 Filblight x 🚳 Arduino : x 🎯 if - Ardu: x S Grave - 3 x 4) Grave - 3 x H 🖪 Grave - 1 x 4) Grave - 1 x 3 J Kitalit x 🧔 Seeed-Si x 🗱 Arduino : x 🕥 Seeed-Si x 4				
← → C a github.com/Seeed_Ardulno_LIS3DHTR/				
Search or jump to 7 Pull reque	sts Issues Codespaces M	larketplace Explore	Q +• 🕉•	
Seeed-Studio / Seeed_Arduino_LIS3DHTR     Code      Issues      The Pull requests      Actions	Public Projects   Security	∠ Insights	⊗ Watch 8 • ↓ Fork 18 • ☆ Star 10 •	
P master → P 2 branches 🛇 5 tag	15	Go to file Add file •	About	
lakshanthad Update version		Local Codespaces (New)	This library is for Grove - 3-Axis Digital Accelerometer ±2g to 16g (LIS3DHTR)	
.github/ISSUE_TEMPLATE	Update issue templates	Clone (*)	and temperature.	
examples	update: update example	HTTPS SSH GitHub CLI	arduino arduino-library grove	
src src	Removing Unused variabel	https://github.com/Seeed_Studio/Seeed_Ard	acceleration-data lis3dhtr	
🗅 .gitlab-ci.yml	update: update readme.	Use Git or checkout with SVN using the web URL.	Readme	
🗅 .travis.yml	update: update readme.	(삶) Open with GitHub Desktop	ATA MIT license	
CODE_OF_CONDUCT.md	Create CODE_OF_CONDUCT.		Code of conduct	
CONTRIBUTING.md	Create CONTRIBUTING.md	Download ZIP	<ul> <li>8 watching</li> </ul>	
LICENSE	first commit	3 years ago	양 18 forks	
C README.md	update: update readme.	3 years ago		
🗅 keywords.txt	update: update readme.	3 years ago Releases 5		
library.properties	Update version	7 months ago	♦ v1.2.4 (Latest)	
i≣ README.md			+ 4 releases	

Add the previously downloaded resource package Seeed\_Arduino\_LIS3DHTR-master.zip through Sketch→Include Library→Add .ZIP Library in the menu bar, until you see a library load successful prompt.

### **Open the Sample File**

Similarly, you can refer to the library file and open the LIS3DHTR\_IIC sample through the following path: File>Examples>Grove-3-Axis-Digital-Accelerometer-2g-to-16g-LIS3DHTR+LIS3DHTR\_IIC.

```
// This example use I2C.
#include "LIS3DHTR.h"
#include <Wire.h>
LIS3DHTR<TwoWire> LIS; //IIC
#define WIRE Wire
void setup()
{
 Serial.begin(115200);
 while (!Serial)
 {
 };
 LIS.begin(WIRE); //IIC init dafault :0x18
 //LIS.begin(WIRE, 0x19); //IIC init
 LIS.openTemp(); //If ADC3 is used, the temperature detection needs to be turned
off.
 // LIS.closeTemp();//default
 delay(100);
 // LIS.setFullScaleRange(LIS3DHTR_RANGE_2G);
 // LIS.setFullScaleRange(LIS3DHTR_RANGE_4G);
 // LIS.setFullScaleRange(LIS3DHTR_RANGE_8G);
 // LIS.setFullScaleRange(LIS3DHTR_RANGE_16G);
```

```
// LIS.setOutputDataRate(LIS3DHTR_DATARATE_1HZ);
 // LIS.setOutputDataRate(LIS3DHTR DATARATE 10HZ);
 // LIS.setOutputDataRate(LIS3DHTR DATARATE 25HZ);
 LIS.setOutputDataRate(LIS3DHTR_DATARATE_50HZ);
 // LIS.setOutputDataRate(LIS3DHTR_DATARATE_100HZ);
 // LIS.setOutputDataRate(LIS3DHTR_DATARATE_200HZ);
 // LIS.setOutputDataRate(LIS3DHTR_DATARATE_1_6KHZ);
 // LIS.setOutputDataRate(LIS3DHTR DATARATE 5KHZ);
 LIS.setHighSolution(true); //High solution enable
void loop()
{
 if (!LIS)
 {
 Serial.println("LIS3DHTR didn't connect.");
 while (1)
 .
 return;
 }
 //3 axis
 // Serial.print("x:"); Serial.print(LIS.getAccelerationX()); Serial.print(" ");
 // Serial.print("y:"); Serial.print(LIS.getAccelerationY()); Serial.print(" ");
 // Serial.print("z:"); Serial.println(LIS.getAccelerationZ());
 //ADC
 Serial.print("adc1:"); Serial.println(LIS.readbitADC1());
 11
 11
 Serial.print("adc2:"); Serial.println(LIS.readbitADC2());
 Serial.print("adc3:"); Serial.println(LIS.readbitADC3());
 11
 //temperature
 Serial.print("temp:");
 Serial.println(LIS.getTemperature());
 delay(500);
}
```

The sample program can read the values of the X, Y, Z axes of the three-axis accelerometer and output through the serial monitor. The sample program provides us with different setting choices using the "//" comment method, but you need to manually select the required parts, as follows:

LIS.begin(WIRE): initializes the default values, you can choose between 0×18 and 0×19, we need to choose LIS.begin(WIRE,0×19);.

LIS.setOutputDataRate(LIS3DHTR\_DATARATE\_50HZ): The accelerometer's output rate has multiple choices, choose 50Hz. The three-axis accelerometer can also monitor the ambient temperature, we temporarily do not need to delete the related code, the complete program is as follows:

```
// This example shows the 3-axis acceleration.
#include "LIS3DHTR.h" // Declare library
#include <Wire.h>
LIS3DHTR<TwoWire> LIS;
#define WIRE Wire // Initialize the module above using hardware I2C
void setup()
{
 Serial.begin(9600);
 while (!Serial) { }; // If you can't open the serial monitor, the code will stop
```

```
here
 LIS.begin(WIRE, 0x19); // Initialize I2C with default value
 delay(100);
 LIS.setOutputDataRate(LIS3DHTR_DATARATE_50HZ); // Set the accelerometer's output
rate to 50Hz.
void loop()
{
 if (!LIS) {
 Serial.println("LIS3DHTR didn't connect.");
 while (1);
 return;
 }
 // Read the values of the X, Y, Z axes from the sensor, and display them on the
serial monitor
 Serial.print("x:"); Serial.print(LIS.getAccelerationX()); Serial.print("
 ");
 Serial.print("y:"); Serial.print(LIS.getAccelerationY()); Serial.print("");
 Serial.print("z:"); Serial.println(LIS.getAccelerationZ());
 delay(500);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L10\_LIS3DHTR\_IIC\_XIAO\_en</u>

Next, connect the three-axis accelerometer to the I2C interface. There are two I2C interfaces on the XIAO expansion board, as shown in the picture below:



# Monitor Data Changes via Serial Monitor

Connect XIAO to your computer with a data cable, upload the program, wait for the program to upload successfully, then open the serial monitor. Move the three-axis accelerometer in the X, Y, Z axis direction and observe the changes in the readings.

••	) 📓 L10_LIS3DHTR_IIC_XIAO_en   Arduino IDE 2.1.0		
Ø	⇒	$\checkmark$	۰ <b>©</b> ۰
	L10_LIS3DHTR_IIC_XIAO_en.ino		
	<pre>5 #define WIRE Wire // Initialize the module above using hardware 12C 6 7 void setup() 9 I</pre>		
	<pre>9   Serial.begin(9600); 10 while (!Serial) { }; // If you can't open the serial monitor, the code will stop here 11   LIS.begin(WIRE, 0x19); // Initialize I2C with default value</pre>		
⇔	<pre>12 delay(100); 13 LIS.setOutputDataRate(LIS3DHTR_DATARATE_50HZ); // Set the accelerometer's output rate to 50Hz.</pre>		
Q	<pre>14 } 15 void loop() 16 { 17   if (!LIS) { 18   Serial.println("LIS3DHTR didn't connect."); 19   while (1); 20   return;</pre>		
	Output Serial Monitor ×	* 0	0 ≣≂
	Message (Enter to send message to 'Seeeduino XIAO' on '/dev/cu.usbmodem1101') New Line	9600 baud	*
	18:09:18.110 -> x:0.05 y:-0.15 z:1.00 18:09:18.603 -> x:-0.05 y:-0.15 z:1.05 18:09:19.099 -> x:-0.05 y:-0.15 z:0.95 18:09:19.592 -> x:0.00 y:-0.20 z:1.05 18:09:20.127 -> x:0.00 y:-0.15 z:1.05 18:09:20.624 -> x:0.00 y:-0.15 z:1.00 18:09:21.21 -> x:0.05 y:-0.20 z:1.05		
0			

# **Monitor Data Changes with Serial Plotter**

The numerical way of presenting the changes in the accelerometer's 3-axis values is not very intuitive. You can open the serial plotter, as shown in the picture below.



# 2.4.3 Project Production: Rhythmic Dance

#### **Project Description**

We can add an RGB LED strip in the project to achieve cool light effects changes. The three-axis accelerometer is used to detect movement, and different light effects are triggered based on different values on the X, Y, Z axes of the accelerometer.

# **Program Writing**

To control the RGB LED strip to change the light effects via the three-axis accelerometer, follow these steps:

- Declare the library files that need to be invoked, define the strip pin and LED quantity.
- Initialize the three-axis accelerometer and the strip.
- Set the light effect of the strip to red, green and blue flashing, set the conditional judgment, and control the change by different value intervals on the X, Y, Z axis of the three-axis accelerometer.

# Task: Control RGB LED Strip to Change Light Effects via Three-Axis Accelerometer

**Step 1:** Declare the library files that need to be invoked, define the strip pin and the number of LEDs.

```
#include "LIS3DHTR.h" // Declare the library file of the three-axis accelerometer
#include <Adafruit_NeoPixel.h> // Declare the strip's library file
#ifdef __AVR__
```

```
#include <avr/power.h>
#endif
// Below are to initialize the module using software I2C or hardware I2C
#ifdef SOFTWAREWIRE
#include <SoftwareWire.h>
SoftwareWire myWire(3, 2);
LIS3DHTR<SoftwareWire> LIS;
#define WIRE myWire
#else
#include <Wire.h>
LIS3DHTR<TwoWire> LIS;
#define WIRE Wire
#endif
#define PIXEL_PIN 0 // Define the pin of the strip, if you use XIA0 RP2040/XIA0 ESP32,
please modify 0 to A0
#define PIXEL_COUNT 30 // Define the number of LEDs in the strip as 30
Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800); // Declare
the strip object, set the data type
```

**Step 2:** Initialize the three-axis accelerometer and the strip. Here, you need to initialize the accelerometer and set the rate to 50HZ.

```
void setup() {
 Serial.begin(9600); // Initialize the serial monitor
 while (!Serial) {}; // If the serial monitor isn't opened, the code will stop
here, so please open the serial monitor
 LIS.begin(WIRE, 0x19); // Initialize I2C
 delay(100);
 LIS.setOutputDataRate(LIS3DHTR_DATARATE_50HZ); // Set the accelerometer's output
rate to 50Hz
 strip.begin(); // Start the strip
 strip.show(); // Display the strip
}
```

**Step 3:** Set the light effects to flash in red, green, and blue, respectively. Conditionals are used to change the color of the light strip according to the varying readings on the X, Y, and Z axes of the 3-axis accelerometer. These readings can be viewed via the serial monitor. By observing the change in values when the accelerometer is moved along the X, Y, and Z axes, we can determine the appropriate settings for the light strip. Since the readings may sometimes be negative, we take the absolute value of the readings. The **abs()** function can be used to get the absolute value, for example, **abs(LIS.getAccelerationX())** would give the absolute value of the reading on the X-axis.

```
void loop() {
 if (!LIS) { // Check if the 3-axis accelerometer is connected properly
 Serial.println("LIS3DHTR didn't connect.");
 while (1);
 return;
 }
 if ((abs(LIS.getAccelerationX()) > 0.2)) {
 theaterChase(strip.Color(127, 0, 0), 50); // The light strip turns red
 }
 if ((abs(LIS.getAccelerationY()) > 0.2)) {
 theaterChase(strip.Color(0, 127, 0), 50); // The light strip turns green
 }
}
```

```
if ((abs(LIS.getAccelerationZ()) > 1.0)) {
 theaterChase(strip.Color(0, 0, 127), 50); // The light strip turns blue
 }
 else
 ł
 strip.clear();
 strip.show();
 }
 // Read the values of the X, Y, and Z axes from the sensor and display them on
the serial monitor
 Serial.print("x:"); Serial.print(LIS.getAccelerationX()); Serial.print(" ");
 Serial.print("y:"); Serial.print(LIS.getAccelerationY()); Serial.print(" ");
 Serial.print("z:"); Serial.println(LIS.getAccelerationZ());
 delay(500);
}
// Set theaterChase for flashing light effects
void theaterChase(uint32_t color, int wait) {
 for(int a=0; a<10; a++) {</pre>
 for(int b=0; b<3; b++) {</pre>
 strip.clear();
 for(int c=b; c<strip.numPixels(); c += 3) {</pre>
 strip.setPixelColor(c, color);
 }
 strip.show();
 delay(wait);
 }
 }
}
```

Complete program as follows:

```
#include "LIS3DHTR.h"// Declare the library file for the 3-axis accelerometer
#include <Adafruit_NeoPixel.h>// Declare the library file for the light strip
#ifdef __AVR_
#include <avr/power.h>
#endif
// The following is to initialize the module using software I2C or hardware I2C
#ifdef SOFTWAREWIRE
#include <SoftwareWire.h>
SoftwareWire myWire(3, 2);
LIS3DHTR<SoftwareWire> LIS;
#define WIRE myWire
#else
#include <Wire.h>
LIS3DHTR<TwoWire> LIS;
#define WIRE Wire
#endif
#define PIXEL_PIN 0 // Define the pin of the light strip, if you are using XIAO
RP2040/XIAO ESP32, please change 0 to A0
#define PIXEL COUNT 30 // Define the number of LEDs on the light strip as 30
Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800); // Declare
the light strip object and set the data type
void setup() {
```

```
Serial.begin(9600); // Initialize the serial monitor
 while (!Serial) {};// If you do not open the serial monitor, the code will stop
here, so please open the serial monitor
 LIS.begin(WIRE, 0x19); // IIC initialization
 delay(100);
 LIS.setOutputDataRate(LIS3DHTR DATARATE 50HZ); // Set the output rate of the ac-
celerometer to 50Hz
 strip.begin(); // The light strip starts working
 strip.show(); // The light strip displays
void loop() {
 if (!LIS) { // Check if the 3-axis accelerometer is connected correctly
 Serial.println("LIS3DHTR didn't connect.");
 while (1);
 return;
 }
 if ((abs(LIS.getAccelerationX()) > 0.2)) {
 theaterChase(strip.Color(127, 0, 0), 50); // The light strip turns red
 if ((abs(LIS.getAccelerationY()) > 0.2)) {
 theaterChase(strip.Color(0, 127, 0), 50); // The light strip turns green
 if ((abs(LIS.getAccelerationZ()) > 1.0)) {
 theaterChase(strip.Color(0, 0, 127), 50); // The light strip turns blue
 }
 else
 ł
 strip.clear();
 strip.show();
 }
 // Read the values of the X, Y, and Z axes from the sensor and display them on
the serial monitor
 Serial.print("x:"); Serial.print(LIS.getAccelerationX()); Serial.print(" ");
 Serial.print("y:"); Serial.print(LIS.getAccelerationY()); Serial.print(" ");
 Serial.print("z:"); Serial.println(LIS.getAccelerationZ());
 delay(500);
}
// Set theaterChase for flashing light effects
void theaterChase(uint32 t color, int wait) {
 for(int a=0; a<10; a++) {</pre>
 for(int b=0; b<3; b++) {</pre>
 strip.clear();
 for(int c=b; c<strip.numPixels(); c += 3) {</pre>
 strip.setPixelColor(c, color);
 }
 strip.show();
 delay(wait);
 }
 }
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L10\_MovementRGBLED\_XIAO\_en</u> **Step 4:** Connect the hardware and upload the program. First, connect the RGB LED light strip to the A0/D0 interface of the XIAO expansion board, and the three-axis accelerometer to the I2C interface, as shown in the figure:



Use a data cable to connect XIAO to your computer, click the "Upload" button in Arduino IDE, and upload the program to the hardware. Once the debugging area shows "Upload Successful", you can open the serial monitor and try swinging the three-axis accelerometer left, right, up, and down to feel the light effect changes of the light strip.

# 2.4.4 Exterior Design

Imagine how cool it would be if there were lights flashing with your dance steps as you passionately swing your arms. That's where the inspiration for Rhythm Dance comes from. It can be combined with clothes or accessories to create a wearable style.

Product Name	Rhythm Dance	
Product Features	Wearable, Cool light effects, Posture detection	
Product Functions	RGB LED light strip displays different light effects based on the values detected by the three-axis accelerometer	
Product Appearance	(For example: The waterproof layer on the outside of the RGB LED light strip can be removed, and it can be sewn together with clothes or a belt, etc.)	

#### **Reference for the case**



# Chapter 3: Intermediate Project Practice -Complex Projects

In this unit, we will delve into more intricate and comprehensive projects, striving towards mature works in terms of program implementation and design of appearance structure. These include miniaturized smart homes, wearable electronic devices, interactive electronic instruments, Wi-Fi connectivity, and applications enabled by XIAO ESP32C3 or telemetry and command via the MQTT protocol. We will provide the laser-cut design blueprints for the first three cases for your reference. Of course, you're not limited to these examples; you could use other, more accessible materials, such as corrugated cardboard or cardstock, for crafting. Feel free to unleash your creativity and design the work you wish to present!

# 3.1 Smart Remote Control Door

In everyday life, privacy and security are matters of great concern to everyone. In recent years, the doors of residential areas have become increasingly smart, only accessible through electronic keys or passwords, preventing outsiders from gaining entry. In public areas or parking lot entrances, having a smart remote control to operate doors could facilitate the work of security personnel. A simple smart remote control door can be implemented using an infrared transmitter and an infrared receiver, which sends and receives infrared signals to open and close the door. In this section, we will build such a smart remote control door.

# 3.1.1 Background Knowledge

#### **Infrared Receivers and Transmitters**

An infrared receiver is used to receive infrared signals, and is also used for remote control detection. The infrared receiver has an infrared detector for picking up the infrared light emitted by the infrared transmitter. The <u>Grove - IR Infrared</u> <u>Receiver Module</u> has a range of 10 meters; signals cannot be received beyond this effective range. Generally, the infrared receiver and infrared transmitter work together.

An infrared transmitter is a type of remote control device with a remote control function. It emits light through an infrared emission tube within a certain range, thereby achieving control signal functions. The remote controls we use to control TVs, air conditioners, and car doors in daily life are infrared transmitters. Common infrared transmitters include modular ones like the Grove - Infrared Emitter Module, as well as regular remote controls, each with corresponding usage scenarios and methods. For our smart remote control door, we will be using an infrared remote control.

To explain simply, the principle of infrared transmission and reception is that the infrared transmitter inputs the signal, amplifies it, and sends it through the infrared transmission tube. The infrared receiver then receives this infrared signal, amplifies it and converts it back to an electrical signal, thereby realizing infrared control.



Grove - IR Infrared Receiver Module



Grove - Infrared Emitter Infrared Transmitter Module



Grove - Infrared Emitter Infrared Transmitter Module

# 3.1.2 Task 1: Reading Remote Control Key Codes

# Adding the Arduino-IRremote Library File

Before we begin programming the Grove - IR Infrared Receiver with the Arduino IDE, we need
to add the necessary library files. Enter the library file address <u>https://github.com/Arduino-IRremote/Arduino-IRremote</u> in your browser address bar, go to the GitHub page, and click Code→Download ZIP to download the resource package Arduino-IRremote-master.zip to your local machine, as shown in the image below:

😐 🔍 😞 л	🔍 🔍 💩 Hibhliti X   🌚 Arduino I. X   🌚 If-Arduil X   S Grove - I. X   🕼 Grove - I. X   👔 Grove - I. X   🎝 Grove - I. X   J Grove - I. X							
$\varepsilon \rightarrow c$ .	github.com/Seeed-Studio/Seeed_Arduino_L		¤ @ ☆ 🌲 🖬 💱 E					
Search	or jump to 7 Pull requ	ests Issues Codespaces N	larketplace Explore	Q +• 🔗•				
G Seeed-St	udio / Seeed_Arduino_LIS3DHTI	Projects ① Security	l⊻ Insights	⊙ Watch 8 • ¥ Fork 18 • ☆ Star 17 •				
	P master - P 2 branches 🛇 5 ta	gs	Go to file 🖌 📣 Code 🗸	About				
	Sakshanthad Update version		Local Codespaces (New)	This library is for Grove - 3-Axis Digital Accelerometer ±2g to 16g (LIS3DHTR)				
	.github/ISSUE_TEMPLATE	Update issue templates	E Clone	and temperature, arduino arduino-library grove acceleration-data lis3dhtr				
	examples	update: update example	HTTPS SSH GitHub CLI					
	src src	Removing Unused variabel	https://github.com/Seeed_Studio/Seeed_Ard					
	🗅 .gitlab-ci.yml	update: update readme.	Use Git or checkout with SVN using the web URL.	C Readme				
	🗋 .travis.yml	update: update readme.	(날) Open with GitHub Desktop	ATA MIT license				
	CODE_OF_CONDUCT.md	Create CODE_OF_CONDUCT.		Code of conduct				
	CONTRIBUTING.md	Create CONTRIBUTING.md	Download ZIP	<ul> <li>8 watching</li> </ul>				
	LICENSE	first commit	3 years ago	양 18 forks				
	C README.md	update: update readme.	3 years ago					
	La keywords.txt	update: update readme.	3 years ago	Releases 5				
	Ibrary.properties	Update version	7 months ago	S v1.2.4 (Latest)				
	i≣ README.md			+ 4 releases				

Add the resource package Arduino-IRremote-master.zip you just downloaded through Sketch→Include Library→Add .ZIP Library in the Arduino IDE menu bar until you see a message indicating successful library loading.

### **Open the Example File**

If you want to control other devices through the infrared remote control, such as pressing the left key on the mini infrared remote control to rotate the servo to the left, or pressing the right key to rotate the servo to the right, you first need to know what kind of code each key on the remote control will emit. This way, you can set it through the program. But how do you read the codes of different keys on the remote control? You can use the **IRremote** library and open the **IRrecvDemo** example via the following path: **\*\*File**-**Examples**-**IRremote**-**ReceiveDemo\*\***. This example program can read the key codes of the remote control, but some parameters need to be modified:

**\*\*int RECV\_PIN = 7\*\***, change the number according to the hardware connection pin. We have connected the infrared receiver to pin 7. Next, we select useful code. We only need to define the header file and the part that reads the remote control key codes. After reducing, the program is as follows:

```
#include <Arduino.h>
#include <IRremote.h>
const byte IR_RECEIVE_PIN=7; // The infrared receiver is connected to pin 7. If you
are using XIA0 RP2040/XIA0 ESP32, please change 7 to A0
void setup() {
 Serial.begin(115200);
 Serial.println(F("Enabling IRin"));
```

```
IrReceiver.begin(IR_RECEIVE_PIN, ENABLE_LED_FEEDBACK); // Start infrared decoding
Serial.print(F("Ready to receive IR signals at pin "));
Serial.println(IR_RECEIVE_PIN);
delay(1000);
}
void loop() {
 if (IrReceiver.decode()) // Decode successfully, receive a set of infrared sig-
nals
 {
 Serial.println(IrReceiver.decodedIRData.command, HEX); // Output infrared de-
coding result (hexadecimal)
 Serial.println(IrReceiver.decodedIRData.command); // Output infrared decoding
result (octal)
 IrReceiver.resume(); // Receive the next set of values
 }
}
```

Get this program from Github <u>https://github.</u> com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L11\_IRrecvDemo\_en

The infrared receiver module is connected to the port 7, as shown in the following figure:



#### - Attention -

```
If you are using XIAO RP2040/XIAO ESP32, please change 7 to A0.
```

After the code is uploaded, open the serial monitor, aim the remote control at the black component of the infrared receiver at a close distance, press any key, and observe the characters output by the serial monitor. The hexadecimal code appears in the first line, and the octal code appears in the second line. The two lines form one group, representing one key. Please note that if you press the key for too long, "FFFFFFF" will appear, and this line of code and the numeric code below are invalid.

•••		L11_IRrecvDemo_en   Arduino IDE 2.1.0							
	€ 🕞	v <sup>1</sup> Seeeduino XIAO ←	$\mathbf{v}$	Q					
	L11_IRree	ovDemo_en.ino							
	1 2 3 4	<pre>#include <arduino.h> #include <irremote.h> const byte IR_RECEIVE_PIN=7; // The infrared receiver is connected</irremote.h></arduino.h></pre>	to pin 7. If you are using XIAO RP2040/XIAO E	SP32,					
	5 6 void setup() { 7 Serial.begin(115200);								
⇔	<pre>8 Serial.println(F("Enabling IRin")); 9 IrReceiver.begin(IR_RECEIVE_PIN,ENABLE_LED_FEEDBACK); // Start infrared decoding</pre>								
Q	<pre>10 Serial.print(F("Ready to receive IR signals at pin ")); 11 Serial.println(IR_RECEIVE_PIN); 12 delay(1000); 13 } 14</pre>								
	15 16	<pre>void loop() {     if (IrReceiver.decode()) // Decode successfully, receive a set     if (IrReceiver.decode()) // Decode successfully, receive a set</pre>	of infrared signals						
	Output	Serial Monitor ×	* 0	≡×					
	Message	(Enter to send message to 'Seeeduino XIAO' on '/dev/cu.usbmodem1101')	New Line 🔻 9600 baud	*					
	09:33:3 09:33:3 09:33:3 09:33:3 09:33:3	1.023 -> 25 1.121 -> 19 1.121 -> 25 4.092 -> D 4.092 -> 13							
8	09:33:3 09:33:3	4.126 -> D 4.126 -> 13	Col 1 - Seeaduina XIAO on (deulou uchmodem1101 - (* 3	R					

#### - Attention -

Different remote controls may give different values.3.1.3 Project Creation: Smart Remote Door

#### 3.1.3 Project Creation: Smart Remote Door

#### **Project Description**

How can we recreate a smart remote control door? With a remote control and an infrared receiver, the next step is to control the opening and closing of the door. Recall how the remote control doors in our life work? When the remote control is pressed, the door slowly opens. When it opens to a certain angle, it slowly closes. We can use a servo to control the rotation of the door. When closing the door, the servo rotates from 90° to 0°. When opening the door, the servo rotates from 0° to 90°. By transmitting the signals to open and close the door with a remote control, we can implement the function of a smart remote control door.

#### **Program Writing**

To control the rotation of the servo with an infrared remote control, you need to follow these steps:

- Declare the IRremote library and Serve library to be called, and define variables.
- Initialize the library files, initialize the servo.
- Read the infrared decoding result and control the rotation of the servo according to the instructions to the left and right.

# Task 2: Control the Rotation of the Servo with an Infrared Remote Control

Step 1: Declare the IRremote library and Serve library to be called, and define variables.

```
#include <IRremote.h>
#include <Servo.h>
Servo myservo; // Create a servo object myservo to control the servo
int RECV_PIN = 7; // The infrared receiver is connected to pin 7. If you are using
XIA0 RP2040/XIA0 ESP32, please change 7 to A0
IRrecv irrecv(RECV_PIN); // Define an IRrecv object to receive infrared signals
decode_results results; // Decoding results are placed in results
int pos = 90; // Define pos as 90°
```

```
Step 2: Initialize the library files, initialize the servo.
```

```
void setup()
{
 Serial.begin(9600);
 Serial.println("Enabling IRin");
 irrecv.enableIRIn();
 myservo.attach(5); // Connect the servo on pin 5 to myservo. If you are using
XIA0 RP2040/XIA0 ESP32, please change 5 to D5
}
```

**Step 3:** Read the infrared decoding result and control the rotation of the servo according to the instructions to the left and right. If you have questions about the program, you can refer to the comment section.

#### - Attention -

In the example, the infrared signal value of the right key **16761405**, and the infrared signal value of the left key **16712445**, need to be replaced by the values obtained from the "Read Remote Control Key Code" example using the remote control in your hand. Otherwise, there will be no response after pressing the key.

```
void loop() {
 if (irrecv.decode(&results)) { // If decoding is successful, a set of infrared
signals is received
 if (results.value == 16761405) { // If the received signal is 16761405 (right
key)
 for (pos; pos <= 89; pos += 1) { // Then the servo is incremented from
0° to 90° in sequence
 myservo.write(pos);
 // Write the rotation angle value
to the servo pin
 delay(40);
 // The following is to interrupt the above instruction and exit the
loop
 if (irrecv.decode(&results)) {
 irrecv.resume();
 if (results_value == 16712445)
 break;
 }
 }
 }
 if (results.value == 16712445) { // If the received signal is 16712445
(left key)
 for (pos; pos \geq 1; pos -= 1) { // Then the servo is decremented from
90° to 0° in sequence
 // Write the rotation angle value
 myservo.write(pos);
to the servo pin
 delay(40);
 // The following is to interrupt the above instruction and exit the
loop
 if (irrecv.decode(&results)) {
 irrecv.resume();
 if (results.value == 16761405)
 break;
 }
 }
 }
 // Display hexadecimal and octal codes in the serial port
 Serial.println(pos);
 Serial.println(results.value, HEX);
 Serial.println(results.value);
 irrecv.resume();
 }
 delay(100);
}
```

Complete program details:

```
#include <IRremote.h>
#include <Servo.h>
Servo myservo; // Create a servo object myservo to control the servo
int RECV_PIN = 7; // The infrared receiver is connected to pin 7. If you are using
XIAO RP2040/XIAO ESP32, please change 7 to A0
IRrecv irrecv(RECV_PIN); // Define an IRrecv object to receive infrared signals
decode_results results; // Decoding results are placed in results
int pos = 90; // Define pos as 90°
void setup()
{
 Serial.begin(9600);
 Serial.println("Enabling IRin");
 irrecv.enableIRIn();
 myservo.attach(5); // Connect the servo on pin 5 to myservo. If you are using
XIAO RP2040/XIAO ESP32, please change 5 to D5
}
// Note: Left 16712445 Right 16761405, please replace with the key values read from
your own remote control
void loop() {
 if (irrecv.decode(&results)) { // If decoding is successful, a set of infrared
signals is received
 if (results.value == 16761405) { // If the received signal is 16761405 (right
key)
 for (pos; pos <= 89; pos += 1) { // Then the servo is incremented from
0° to 90° in sequence
 // Write the rotation angle value
 myservo.write(pos);
to the servo pin
 delay(40);
 // The following is to interrupt the above instruction and exit the
loop
 if (irrecv.decode(&results)) {
 irrecv.resume();
 if (results_value == 16712445)
 break;
 }
 }
 }
 if (results.value == 16712445) { // If the received signal is 16712445
(left key)
 for (pos; pos >= 1; pos -= 1) { // Then the servo is decremented from
90° to 0° in sequence
 // Write the rotation angle value
 myservo.write(pos);
to the servo pin
 delay(40);
 // The following is to interrupt the above instruction and exit the
loop
 if (irrecv.decode(&results)) {
 irrecv.resume();
 if (results_value == 16761405)
 break;
```

```
}
}
// Display hexadecimal and octal codes in the serial port
Serial.println(pos);
Serial.println(results.value, HEX);
Serial.println(results.value);
irrecv.resume();
}
delay(100);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L11\_IR\_Servo\_ino\_XIAO\_en</u>

**Step 4:** Connect the hardware and upload the program. First, connect the infrared receiving module to the 7th interface of the XIAO expansion board, and connect the servo to the I2C interface, as shown in the figure below:



#### - Attention -

If you are using XIAO RP2040, please connect the infrared receiving module to the A0 interface.

Connect XIAO to the computer with a data cable, click the "Upload" button, upload the program to the hardware, and when the debug area shows "Upload Successful", open the serial monitor, aim the remote control at the infrared receiver, press the "Left" key and the "Right" key, observe the rotation of the servo, and check the encoding information output by the serial monitor.

### 3.1.4 Exterior Design

In this unit, we need to implement a more complete project, combining the functions implemented by the program, the modules, and the appearance of the structure to form a prototype. Going back to the smart remote control door project, we need to control the rotation of the servo through the remote control, simulate the opening and closing of the door. When making the appearance, we need to focus on the following issues:

- How to combine the servo and the door panel to make the rotation of the servo drive the rotation of the door panel.
- The infrared receiver should be exposed in a conspicuous position, without any cover.
- Whether the main control, expansion board, and connecting wires are covered to keep the appearance neat.
- How to make the work stand steadily.

The figure below provides an appearance case, which is laser cut from basswood, and provides cutting files for reference. If you can use drawing software, you can process and design it yourself. If you don't have a laser cutting machine, you can also use corrugated paper, cardstock, non-woven fabric, and other handmade materials to make it, which tests your hands-on ability more.



#### Download files for use with a laser cutter

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO\_ADR.dxf.









# 3.2 Smart Watch

The watch is a common item in life. Even though various electronic devices now have timing functions, and mobile phones can replace watches as timing tools, watches are still a popular item. They are not only timing tools, but also have fashion matching functions. Although watches are delicate and small, they involve complex craftsmanship. Now with XIAO and its expansion board, we can easily make them.

# 3.2.1 Background Knowledge

### **RTC Clock**

RTC stands for Real\_Time Clock, which is an integrated circuit used to display time, also called an RTC clock chip. RTCs are widely used, and we can find RTC in almost any electronic device. In the XIAO expansion board, there is an RTC clock chip, as shown in the following figure. We can display the date and time on the OLED display on the expansion board, and it can be powered by a button battery or lithium battery. Even if we disconnect, it can continue to track time. When we reconnect the power supply, we will find that the time is still moving. With the RTC clock, we can make timed reminder devices, such as timed watering, timed pet feeding, and so on.

Grove also has an RTC module: <u>Grove - DS1307 RTC (Real Time Clock)</u> for Arduino, as shown in the figure below.



Position of the RTC clock chip on the XIAO expansion board



Grove RTC Module

# 3.2.2 Task 1: Displaying RTC Clock in the Serial Monitor

# Adding PCF8563-Arduino-Library Library

Before starting to program the RTC on the XIAO expansion board with Arduino IDE, you need to add the necessary library files. Enter the library file address <a href="https://github.com/Bill2462/PCF8563-Arduino-Library">https://github.com/Bill2462/PCF8563-Arduino-Library</a> in the browser address bar, go to the GitHub page, click <a href="https://code-Download">code-Download</a> ZIP to download the resource package <a href="https://pression.com">PCF8563-Arduino-Library</a> master.zip to the local, as shown in the figure below.

Bill2462/PCF8563-Arduino-L	ib × +		~					
$\leftrightarrow$ $\rightarrow$ C $$ github.com/Bill2462/PC	→ C							
Search or jump to	7 Pull requests Issu	ies Codespaces Marketplace Explore	¢ +• &•					
Bill2462 / PCF8563-Arduir     Code      issues      Pull requ	no-Library Public	⊗ Wat	ch 🗓 🕶 🦉 Fork 🧻 💌 🏠 🕹 🕹					
P master - P 2 branches C	> 2 tags	Go to file Add file - Code	About					
Sill2462 New readme		Local Codespaces (New)	Arduino Library for PCF8563 real time clock.					
examples	New features	E Clone	Readme					
src 📄	New features	HTTPS SSH GitHub CLI	전철 GPL-3.0 license 文 Z stars					
🗅 .travis.yml	New features	https://github.com/Bill2462/PCF8563-Ardui	<ul> <li>✓ 1 watching</li> </ul>					
LICENSE	Initial commit	Use Git or checkout with SVN using the web URL.	얓 1 fork					
README.md	New readme	(슈) Open with GitHub Desktop						
l keywords.txt	New features		Releases 2					
library.properties	Ibrary.properties add url     Download ZIP     OPCF85     on Max							
i≣ README.md	E README.md							
PCF8563-Ardu	Packages No packages published							
Arduino Library for PCF8563 re	eal time clock.		Languages					
ΑΡΙ			• C++ 100.0%					

Add the previously downloaded resource package PCF8563-Arduino-Library-master.zip in Sketch-Include Library-Add .ZIP Library in the menu bar until you see the library loading success prompt.

#### **Opening the Sample File**

Creating an RTC clock can't be without the powerful library file. Open the **simple** example through the following path: File→Examples→PCF8563→simple. This example program can display the RCT clock through the serial monitor. After opening the example program, we only need to modify the current date and start time:

```
#include <PCF8563.h> //Declare library file
PCF8563 pcf;//Define variable pcf
void setup() {
 Serial.begin(9600);
 pcf.init();//Initialize the clock
 pcf.stopClock();//Stop the clock
 //Set the current date and time. After setting, it will start timing from this
moment
 pcf.setYear(23);//Year
 pcf.setMonth(05);//Month
 pcf.setDay(29);//Day
 pcf.setHour(16);//Hour
 pcf.setMinut(10);//Minute
 pcf.setSecond(0);//Second
 pcf.startClock();//Clock starts timing
}
```

```
void loop() {
 Time nowTime = pcf.getTime();//Get time
 //Print the current date and time on the serial monitor
 Serial.print(nowTime.day);
 Serial.print("/");
 Serial.print(nowTime.month);
 Serial.print("/");
 Serial.print("20"); // Manually input the set year
 Serial.print(nowTime.year);
 Serial.print("/");
 Serial.print(nowTime.hour);
 Serial.print(":");
 Serial.print(nowTime.minute);
 Serial.print(":");
 Serial.println(nowTime.second);
 delay(1000);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L12\_RTC\_simple\_XIAO\_en</u>

Without connecting other electronic modules, you can click the upload program button. After the code is uploaded, open the serial monitor, and you will be able to see the time.



### 3.2.3 Project Making: Smart Watch

#### **Project Description**

In this section, we are going to make a smart watch that can display the date, time, temperature, and humidity in real time. To display the date and time, we just need XIAO and the expansion board. To display the temperature and humidity, we need to add a temperature and humidity sensor.

#### Programming

The program consists of the following steps:

- Declare the necessary libraries and define variables.
- Initialize the libraries, and set the current time.
- Read temperature and humidity variables, get the current time, and display the temperature, humidity, and date/time on the OLED screen.

#### - Attention -

Before starting to program for the OLED of the XIAO expansion board, make sure that the U8g2\_Arduino library has been loaded into the Arduino IDE. The loading method can be referred to the instructions in the "How to Download and Install Arduino Libraries" section of Section 1.1.

Before starting to program for the Grove temperature and humidity sensor, make sure that the Arduino IDE has loaded the Grove\_Temperature\_And\_Humidity\_Sensor library. The loading method can be referred to the instructions in the "Adding the <u>Grove\_Temperature\_</u>And\_Humidity\_Sensor Library" section of Section 2.2.

# Task 2: Display the current time and temperature/humidity values on the OLED display of the XIAO expansion board (based on the DHT20 sensor)

**Step 1:** Declare the necessary libraries and define variables.

```
#include <Arduino.h>
#include <U8x8lib.h> //use u8x8 library
#include <PCF8563.h> //RTC library
PCF8563 pcf; //define variable pcf
#include <Wire.h>
#include "DHT.h" //DHT library
#define DHTTYPE DHT20 //The type of the temperature and humidity sensor is DHT20
DHT dht(DHTTYPE);
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE); //OLED's con-
structor, set data type, connect OLED display
```

Step 2: Initialize the libraries, and set the current time.

```
void setup() {
 Serial.begin(9600);
 u8x8.begin(); //u8x8 starts working
 u8x8.setFlipMode(1);
 Wire.begin();
 pcf.init(); //Initialize the clock
 pcf.stopClock(); //Stop the clock
 //Set the current time and date:
 pcf.setYear(23);
 pcf.setMonth(05);
 pcf.setDay(29);
 pcf.setHour(18);
 pcf.setSecond(0);
 pcf.startClock(); //The clock starts timing
}
```

**Step 3:** Read temperature and humidity variables, get the current time, and display the temperature, humidity, and date/time on the OLED screen.

```
void loop() {
 float temp, humi; //Define temperature and humidity variables
 temp = dht.readTemperature(); //Read the temperature value
 humi = dht.readHumidity(); //Read the humidity value
 Time nowTime = pcf.getTime(); //Get the time
 u8x8.setFont(u8x8_font_chroma48medium8_r); //u8x8 font
 //Display the current date, time, temperature, and humidity at different coordi-
nates on the OLED screen.
 u8x8.setCursor(0, 0);
 u8x8.print(nowTime.day);
 u8x8.print("/");
 u8x8.print(nowTime.month);
 u8x8.print("/");
 u8x8.print("20");
 u8x8.print(nowTime.year);
 u8x8.setCursor(0, 1);
 u8x8.print(nowTime.hour);
 u8x8.print(":");
 u8x8.print(nowTime.minute);
 u8x8.print(":");
 u8x8.println(nowTime.second);
 delay(1000);
 u8x8.setCursor(0, 2);
 u8x8.print("Temp:");
 u8x8.print(temp);
 u8x8.print("C");
 u8x8.setCursor(0,3);
 u8x8.print("Humidity:");
 u8x8.print(humi);
 u8x8.print("%");
 u8x8.refreshDisplay();
 delay(200);
}
```

For the complete program, please refer to:

```
#include <Arduino.h>
#include <U8x8lib.h> //use u8x8 library
#include <PCF8563.h> //RTC library
PCF8563 pcf; //define variable pcf
#include <Wire.h>
#include "DHT.h" //DHT library
#define DHTTYPE DHT20 //The type of the temperature and humidity sensor is DHT20
DHT dht(DHTTYPE);
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE); //OLED's con-
structor, set data type, connect OLED display
void setup() {
 Serial.begin(9600);
 u8x8.begin(); //u8x8 starts working
 u8x8.setFlipMode(1);
 Wire.begin();
 pcf.init(); //Initialize the clock
```

```
pcf.stopClock(); //Stop the clock
 //Set the current time and date:
 pcf.setYear(23);
 pcf.setMonth(05);
 pcf.setDay(29);
 pcf.setHour(18);
 pcf.setMinut(53);
 pcf.setSecond(0);
 pcf.startClock(); //The clock starts timing
void loop() {
 float temp, humi; //Define temperature and humidity variables
 temp = dht.readTemperature(); //Read the temperature value
 humi = dht.readHumidity(); //Read the humidity value
 Time nowTime = pcf.getTime(); //Get the time
 u8x8.setFont(u8x8_font_chroma48medium8_r); //u8x8 font
 //Display the current date, time, temperature, and humidity at different coordi-
nates on the OLED screen.
 u8x8.setCursor(0, 0);
 u8x8.print(nowTime.day);
 u8x8.print("/");
 u8x8.print(nowTime.month);
 u8x8.print("/");
 u8x8.print("20");
 u8x8.print(nowTime.year);
 u8x8.setCursor(0, 1);
 u8x8.print(nowTime.hour);
 u8x8.print(":");
 u8x8.print(nowTime.minute);
 u8x8.print(":");
 u8x8.println(nowTime.second);
 delay(1000);
 u8x8.setCursor(0, 2);
 u8x8.print("Temp:");
 u8x8.print(temp);
 u8x8.print("C");
 u8x8.setCursor(0,3);
 u8x8.print("Humidity:");
 u8x8.print(humi);
 u8x8.print("%");
 u8x8.refreshDisplay();
 delay(200);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L12\_SmartWatch\_DHT20\_XIAO\_en</u>

**Step 4:** Connect the hardware and upload the program. First, connect the DHT20 temperature and humidity sensor to the I2C interface of the XIAO expansion board, and connect the XIAO to the computer with a data cable, as shown in the picture:



Click the "Upload" button in the Arduino IDE to upload the program to the hardware. When the debugging area shows "Upload successful", observe whether the OLED display correctly outputs the current time and starts timing, as well as the real-time temperature and humidity.



# Task 3: Display the current time and temperature and humidity values on the OLED display of the XIAO expansion board (based on the DHT11 sensor)

If you are using the Grove DHT11 temperature and humidity sensor with a blue casing, part of the program code needs to be modified as follows:

**#define DHTPIN 0**, this needs to be modified according to the actual pin number to which the temperature and humidity sensor is connected.

**#define DHTTYPE DHT11**, since there are different models of temperature and humidity sensors, you need to select the correct model — DHT11. The modified example code is as follows:

```
#include <Arduino.h>
#include <U8x8lib.h>
#include <PCF8563.h>
PCF8563 pcf;
#include <Wire.h>
#include "DHT.h"
#define DHTPIN 0
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE);
//U8X8_SSD1306_128X64_NONAME_SW_I2C u8x8(/* clock=*/ SCL, /* data=*/ SDA, /* re-
set=*/ U8X8_PIN_NONE); // OLEDs without Reset of the Display
void setup() {
 Serial.begin(115200);
 u8x8.begin();
 u8x8.setFlipMode(1);
 Wire.begin();
 pcf.init(); //initialize the clock
 pcf.stopClock(); //stop the clock
 pcf.setYear(23); //set year
 pcf.setMonth(05); //set month
 pcf.setDay(29); //set date
 pcf.setHour(18); //set hour
 pcf.setMinut(53); //set minute
 pcf.setSecond(0); //set second
 pcf.startClock(); //start the clock
}
```

```
void loop() {
 float temp, humi;
 temp = dht.readTemperature();
 humi = dht.readHumidity();
 Time nowTime = pcf.getTime(); //get current time
 u8x8.setFont(u8x8_font_chroma48medium8_r); // choose a suitable font
 u8x8.setCursor(0, 0);
 u8x8.print(nowTime.day);
 u8x8.print("/");
 u8x8.print(nowTime.month);
 u8x8.print("/");
 u8x8.print("20");
 u8x8.print(nowTime.year);
 u8x8.setCursor(0, 1);
 u8x8.print(nowTime.hour);
 u8x8.print(":");
 u8x8.print(nowTime.minute);
 u8x8.print(":");
 u8x8.println(nowTime.second);
 delay(1000);
 u8x8.setCursor(0, 2);
 u8x8.print("Temp:");
 u8x8.print(temp);
 u8x8.print("C");
 u8x8.setCursor(0,3);
 u8x8.print("Humidity:");
 u8x8.print(humi);
 u8x8.print("%");
 u8x8.refreshDisplay();
 delay(200);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L12\_SmartWatch\_DHT11\_XIAO\_en</u>

After modifying the code, first connect the DHT11 temperature and humidity sensor to the A0 interface of the XIAO expansion board, as shown in the image below.

Then connect the XIAO development board to your computer, upload the modified sample program to the XIAO via Arduino IDE, and you should be able to see the time, temperature, and humidity readings on the OLED of the XIAO expansion board. You can place the temperature and humidity sensor in different environments to observe changes in temperature and humidity readings.



### 3.2.4 Exterior Design

Given its compact size, XIAO is especially suitable for creating wearable devices. The expansion board incorporates an RTC chip, a buzzer, and an OLED display screen, which means you can create a variety of applications even without adding other modules. In this section, we have made a smart watch using the on-board OLED display, RTC chip, and an external temperature and humidity sensor. When creating the appearance, we only need to consider wearability, organization of modules and connecting wires, and the exposure of the OLED display screen. As shown below, we provide a wearable watch style and the laser cutting files for it. With just a simple installation, your wearable device is ready.



Download files for laser cutting machine <a href="https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO\_X\_watch.dxf">https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO\_X\_watch.dxf</a>



# 3.3 Air Piano

Normally, when we play a musical instrument, we have to pluck strings or press keys to produce musical notes. However, with electronic modules, playing music can become more exciting. For instance, you can simulate piano playing with push-button switches and even integrate light effects for interactive music. But if you use push-button switches as piano keys, you need to integrate many modules into the circuit. Is there a simpler and more unique idea? A combination of ultrasonic distance sensor and passive buzzer can do just that - detecting different distances with ultrasonics to trigger different notes, just like playing a piano in the air.

# 3.3.1 Background Knowledge

#### **Grove Ultrasonic Distance Sensor**

The <u>Grove Ultrasonic Distance Sensor</u> is a non-contact distance measurement module. Thanks to its strong directivity, the ultrasonic waves it emits can travel long distances in a medium. The calculations are simple and it is easy to control, so it's often used for distance measurements. When the ultrasonic distance sensor works, the transmitter emits ultrasonic waves in a certain direction. When the waves hit an obstacle, they reflect back.



The ultrasonic receiver stops timing as soon as it receives the reflected waves. The actual distance from the emission point to the obstacle is calculated based on the time difference between emission and reception, much like bat echolocation. The application range of ultrasonic waves is becoming broader, commonly seen in reverse radar systems, intelligent guidance systems, robot obstacle avoidance systems, medical ultrasound examinations, and more.

#### - Attention -

The Grove Ultrasonic Distance Sensor module is not included in the Seeed Studio XIAO Starter Kit!



# 3.3.2 Task 1: Reading the Grove Ultrasonic Distance Sensor Value

#### Adding the Seeed\_Arduino\_UltrasonicRanger Library

Before starting to program the Grove Ultrasonic Distance Sensor with Arduino IDE, it's necessary to add the essential library for the sensor. Type the library address <u>https://github.com/Seeed-Studio/Seeed\_Arduino\_UltrasonicRanger</u> into the browser address bar, enter the GitHub page, click Code→Download ZIP to download the resource package Seeed\_Arduino\_UltrasonicRanger-master.zip to your local drive, as shown below.

Seeed_Studio/Seeed_Arduino_ × +							
+ → C 🖬 github.com/Seeed_Studio/Seeed_Arduino_UltrasonicRanger 🛛 🕸 🛧 🛊 🗆 🤱 🗄							
Search or jump to 🕧 Pull r	requests Issues Codespa	ces Marketplace Explore	¢ +• 🐝				
Geeed-Studio / Seeed_Arduino_Ultrasc     Seeed_Studio / Seeed_Arduino_Ul	onicRanger Public Actions 🗄 Projects 🛛	⊙ Wate	th 17 ▼ V Fork 17 ▼ ☆ Star 26 ▼				
₽ master - ₽ 1 branch ♦ 4 tags		Go to file Add file - Code -	About				
moritzbutzmann and Pillar1989 added	d option to specify a custom	Local Codespaces (New)	This library provides a code to measure the distance to obstacles in front and				
github/ISSUE_TEMPLATE U	pdate issue templates	Clone (?)	terminal or LCD.				
examples Pr	retty printed the Arduino cor	HTTPS SSH GitHub CLI	arduino distance arduino-library				
🗋 .gitattributes a	applitation demo	https://github.com/Seeed_Studio/Seeed_Ard	ultrasonic grove				
🗋 .gitignore a	applitation demo	Use Git or checkout with SVN using the web URL.	C Readme				
🗋 .gitlab-ci.yml Si	eeed:Arduino: fix travis.yml v	[上] Open with GitHub Desktop	책 MIT license				
🗋 .travis.yml 🗛	dd: call new version CI scrip		G Code of conduct ☆ 26 stars				
CODE_OF_CONDUCT.md	reate CODE_OF_CONDUCT.	Download ZIP	<ul> <li>17 watching</li> </ul>				
CONTRIBUTING.md U	pdate CONTRIBUTING.md	2 years ago	얗 17 forks				
License.txt **	re-arranged the dir structure	; 9 years ago					
C README.md So	eeed:Arduino: Add travis build	d status 3 years ago	Releases 4				
🗋 Ultrasonic.cpp ad	dded option to specify a custo	om timeout for pulseln 3 months ago	S v1.0.3 (Latest)				
🗋 Ultrasonic.h ad	dded option to specify a custo	om timeout for pulseln 3 months ago					
🗅 keywords.txt ac	dded MeasureInMillimeters()	to increase resolution 2 years ago	+ 3 releases				
library.properties up	pdate version to 1.0.1	5 years ago	Packages				
			No nackages published				

Add the downloaded resource package Seeed\_Arduino\_UltrasonicRanger-master.zip to the Sketch-Include Library-Add .ZIP Library from the menu bar until you see a successful library loading prompt.

### **Opening the Example File**

After successfully installing the library, a new item Grove Ultrasonic Ranger will be added to the Arduino's File→Examples list. Open the UltrasonicDisplayOnTerm sample program from it. This program can display the value of the ultrasonic distance sensor on the Serial Monitor. Modify Ultrasonic ultrasonic(7); in the sample program to Ultrasonic ultrasonic(0); (the ultrasonic distance sensor will be connected to the A0 port of the XIAO expansion board).



Open the modified sample file through the following path, <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L13\_UltrasonicDisplayOnTerm\_XIAO\_en</u>.

```
#include "Ultrasonic.h"//declare the library file
Ultrasonic ultrasonic(0);//define variables, connect pins. If you're using XIAO
RP2040/XIAO ESP32, please change 0 to D0
void setup() {
 Serial.begin(9600);
}
void loop() {
 long RangeInInches;//define a long integer variable named RangeInInches
 long RangeInCentimeters;//define a long integer variable named RangeInCentimeters
 Serial.println("The distance to obstacles in front is: ");
 RangeInInches = ultrasonic.MeasureInInches();//read the distance value (inches)
measured by the ultrasonic distance sensor and store it in the variable RangeInInch-
es
 Serial.print(RangeInInches);//serial print value
 Serial.println(" inch");
 delay(250);
```

RangeInCentimeters = ultrasonic.MeasureInCentimeters(); //read the distance

```
value (centimeters) measured by the ultrasonic distance sensor and store it in the
variable RangeInCentimeters
 Serial.print(RangeInCentimeters);//serial print value
 Serial.println(" cm");
 delay(250);
}
```

The ultrasonic distance sensor is connected to the A0 interface, as shown in the figure below:

After uploading the code, open the Serial Monitor. Place your hand or a card at any position in front of the ultrasonic distance sensor and observe the change in the values output by the Serial Monitor.



••		L13_UltrasonicDisplayOnTerm_XIAO_en   Arduino IDE 2.1.0							
	€ €	v <sup>1</sup> Seeeduino XIAO ▼		~	۰ <b>©</b> ۰۰				
Ph	L13_Ultra	sonicDisplayOnTerm_XIAO_en.ino							
	1 2	<pre>#include "Ultrasonic.h"//declare the library file Ultrasonic ultrasonic(0);//define variables, connect pins. If you're using XIAO RP</pre>	2040/XIAO ESP32,	please chan	ge 0 to				
1	<pre>3 void setup() { 4     Serial.begin(9600);</pre>								
Πh	5 }								
	7	long RangeInInches;//define a long integer variable named RangeInInches							
	8 long RangeInCentimeters://define a long integer variable named RangeInCentimeters								
⇒>	9				- H				
	10	<pre>Serial.println("The distance to obstacles in front is: ");</pre>							
$\cap$	11 RangeInInches = ultrasonic.MeasureInInches();//read the distance value (inches) measured by the ultrasonic dist								
X	12	<pre>Serial.print(RangeInInches);//serial print value</pre>							
	13	<pre>Serial.println(" inch");</pre>			- I.				
	14	delay(250);							
	15								
	16	RangeIncentimeters = ultrasonic.MeasureIncentimeters(); //read the distance va	lue (centimeters)	measured by	/ the u				
	Output	Origi Mariar M		~ /	a =				
	Output	Senal Monitor X		~ (	9 =×				
	Message	Enter to send message to 'Seeeduino XIAO' on '/dev/cu.usbmodem1101')	New Line 🔻	9600 baud	*				
	12:28:3	1.964 -> 11 cm							
	12:28:3	2.200 -> The distance to obstacles in front is:							
	12:28:3	2.200 -> 4 inch							
	12:28:3	2.465 -> 11 cm							
	12:28:3	2.698 -> The distance to obstacles in front is:							
	12:20:3	2.696 -> 11 cm							
8	1212013	1770 11 UN							
		Ln 7, Col 52 Seeeduino 3	XIAO on /dev/cu.usbm	odem1101 🥼	2 🗖				

#### 3.3.3 Project Production: Ultrasonic Air Harp

#### **Project Description**

The working principle of the air harp is to measure the distance from the module to the palm of your hand through the ultrasonic distance sensor. Depending on the distance, the buzzer emits different musical notes. We have already learned how to measure distance and read values through the ultrasonic distance sensor with the sample program. Next, we just need to define different musical notes for



the corresponding distances. As shown in the figure below: According to the width of the palm, one musical note corresponds to a unit of 2cm, and the performance starts from 4cm. "Do, Re, Mi, Fa, Sol, La, Xi, Do" respectively correspond to 4cm, 6cm, 8cm, 10cm, 12cm, 14cm, 16cm, 18cm... and so on.

#### Writing the Program

The implementation of the air harp program requires the following steps:

- Declare the library file, define different notes and buzzer pins.
- Initialization, setting the status of the buzzer pin.
- Read the distance (cm) measured by the ultrasonic distance sensor, and make a condition judgment to set different distances to emit different notes.

#### Using the tone() Function to Play Melody

When we want to control the buzzer to play notes or songs through the program, we need to set the frequency value of each note ourselves. If a song has many notes, it's too troublesome to adjust one by one, and it tests our music theory knowledge and pitch. Is there a simpler method? Of course! When defining notes, we can refer to the tone() function written on the Arduino website <a href="https://www.arduino.cc/en/Tutorial/BuiltInExamples/toneMelody">https://www.arduino.cc/en/Tutorial/BuiltInExamples/toneMelody</a>, this function defines the corresponding frequency of different notes through pitches.h, which is convenient for us to use the tone() function to set the notes emitted by the buzzer. The code of pitches.h is shown below:

/*	#defin	e NOTE_D3	147	#define	NOTE_A5	880
<pre>* pitches.h</pre>	#defin	e NOTE_DS3	156	#define	NOTE_AS5	932
*/	#defin	e NOTE_E3	165	#define	NOTE_B5	988
	#defin	e NOTE_F3	175	#define	NOTE_C6	1047
<pre>#define NOTE_B0 31</pre>	#defin	e NOTE_FS3	185	#define	NOTE_CS6	1109
<pre>#define NOTE_C1 33</pre>	#defin	e NOTE_G3	196	#define	NOTE_D6	1175
<pre>#define NOTE_CS1 35</pre>	#defin	e NOTE_GS3	208	#define	NOTE_DS6	1245
<pre>#define NOTE_D1 37</pre>	#defin	e NOTE_A3	220	#define	NOTE_E6	1319
<pre>#define NOTE_DS1 39</pre>	#defin	e NOTE_AS3	233	#define	NOTE_F6	1397
<pre>#define NOTE_E1 41</pre>	#defin	e NOTE_B3	247	#define	NOTE_FS6	1480
<pre>#define NOTE_F1 44</pre>	#defin	e NOTE_C4	262	#define	NOTE_G6	1568
<pre>#define NOTE_FS1 46</pre>	#defin	e NOTE_CS4	277	#define	NOTE_GS6	1661
<pre>#define NOTE_G1 49</pre>	#defin	e NOTE_D4	294	#define	NOTE_A6	1760
<pre>#define NOTE_GS1 52</pre>	#defin	e NOTE_DS4	311	#define	NOTE_AS6	1865
#define NOTE_A1 55	#defin	e NOTE_E4	330	#define	NOTE_B6	1976
<pre>#define NOTE_AS1 58</pre>	#defin	e NOTE_F4	349	#define	NOTE_C7	2093
#define NOTE_B1 62	#defin	e NOTE_FS4	370	#define	NOTE_CS7	2217
#define NOTE_C2 65	#defin	e NOTE_G4	392	#define	NOTE_D7	2349
#define NOTE_CS2 69	#defin	e NOTE_GS4	415	#define	NOTE_DS7	2489
#define NOTE_D2 73	#defin	e NOTE_A4	440	#define	NOTE_E7	2637
<pre>#define NOTE_DS2 78</pre>	#defin	e NOTE_AS4	466	#define	NOTE_F7	2794
#define NOTE_E2 82	#defin	e NOTE_B4	494	#define	NOTE_FS7	2960
#define NOTE_F2 87	#defin	e NOTE_C5	523	#define	NOTE_G7	3136
#define NOTE_FS2 93	#defin	e NOTE_CS5	554	#define	NOTE_GS7	3322
#define NOTE_G2 98	#defin	e NOTE_D5	587	#define	NOTE_A7	3520
#define NOTE_GS2 104	#defin	e NOTE_DS5	622	#define	NOTE_AS7	3729
#define NOTE_A2 110	#defin	e NOTE_E5	659	#define	NOTE_B7	3951
#define NOTE_AS2 117	#defin	e NOTE_F5	698	#define	NOTE_C8	4186
#define NOTE_B2 123	#defin	e NOTE_FS5	740	#define	NOTE_CS8	4435
#define NOTE_C3 131	#defin	e NOTE_G5	784	#define	NOTE_D8	4699
#define NOTE_CS3 139	#defin	e NOTE_GS5	831	#define	NOTE_DS8	4978

#### Task 2: Ultrasonic Air Harp

**Step 1:** Declare the library file, define different notes and buzzer pins. The main notes we use are "Do Re Mi Fa Sol La Xi Do", corresponding to "C5 D5 E5 F5 G5 A5 B5 C6". You can only define the notes you need to avoid the program looking too lengthy.

```
#include "Ultrasonic.h"//declare the library file
Ultrasonic ultrasonic(0);//define the ultrasonic object and connect the ultrasonic
wave to the A0 interface. If you're using XIAO RP2040, please change 0 to D0
int buzzerPin = 3;//The buzzer is connected to the A3 interface, if you're using
XIAO RP2040, please change 3 to A3
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
```

**Step 2:** Initialize the baud rate and set the buzzer pin status.

```
void setup()
{
 Serial.begin(9600);
 pinMode(buzzerPin,OUTPUT);
}
```

#define NOTE\_C6 1047

**Step 3:** Read the distance (cm) measured by the ultrasonic distance sensor and make a condition judgment to set different distances to emit different notes. Since the setting of the air harp is that different distances trigger different notes, and this distance is a long integer value, so we need to use the long() function to define the value returned by the ultrasonic wave. For example, (long)RangeInCentimeters== 4, that is, the distance value returned by the ultrasonic wave is 4. Corresponding to the buzzer emitting different notes, use the tone() function, for example, tone(3,NOTE\_C5,100), that is, the buzzer on pin 3, emits NOTE\_C5 (Do) note, lasts for 100 milliseconds.

```
void loop()
{
 // Read the distance value detected by the ultrasonic distance sensor, in centi-
meters, and print it on the serial monitor
 long RangeInCentimeters;
 RangeInCentimeters = ultrasonic.MeasureInCentimeters();
 Serial.print(RangeInCentimeters);
 Serial.println(" cm");
 delay(250);
 // Using an if statement for conditional judgment, when the distance is 4, 6, 8,
10, 12, 14, 16, 18, it corresponds to C5, D5, E5, F5, G5, A5, B5, C6
 if (((long)RangeInCentimeters== 4)) { //Do
```

```
tone(3,NOTE_C5,100);
 }
 if (((long) RangeInCentimeters== 6)) { //Re
 tone(3,NOTE_D5,100);
 if (((long) RangeInCentimeters== 8)) { //Mi
 tone(3,NOTE_E5,100);
 }
 if (((long) RangeInCentimeters== 10)) { //Fa
 tone(3,NOTE_F5,100);
 if (((long) RangeInCentimeters== 12)) { //Sol
 tone(3,NOTE_G5,100);
 }
 if (((long) RangeInCentimeters== 14)) { //La
 tone(3,NOTE_A5,100);
 if (((long) RangeInCentimeters== 16)) { //Xi
 tone(3,NOTE_B5,100);
 if (((long) RangeInCentimeters== 18)) { //Do
 tone(3,NOTE_C6,100);
 }
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L13\_UltrasonicPiano\_XIAO\_en</u>

Step 4: Connect the hardware and upload the program. Connect the ultrasonic distance sensor to the A0 interface of the XIAO expansion board as shown below:

Use the data cable to connect XIAO to the computer, click the "Upload" button, upload the program to the hardware, when the debugging area shows "Upload Successful", open the serial monitor, and start playing with your palm.



#### 3.3.4 Exterior Design

The inspiration for the air harp comes from the piano, with a note every 2 cm also designed according to the style of the piano keys. In the process of creating the appearance, we can cut a harp surface from a basswood board, and fix the ultrasonic range sensor at the left end of the harp. We also provide laser cutting files for reference, which can be easily assembled, as shown in the picture:



Download the files suitable for the laser cutting machine <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO\_Air\_Piano.dxf.</u>



# 3.4 Implementing Wi-Fi Connection and Applications with XIAO ESP32C3

Rather than saying computers have changed the world, it would be more accurate to say that computer networks have. The emergence of networks has truly made computers different from previous tools. The sharing and exchange of information have made computers an epoch-making product. In this section, we will learn how to implement network requests using XIAO ESP32C3, which has Wi-Fi and Bluetooth (BLE) capabilities. This includes connecting XIAO to a Wi-Fi network, pinging specified websites, and issuing GET/POST requests using the HTTP protocol.



Seeed Studio XIAO ESP32C3

### 3.4.1 Background Knowledge

#### **OSI Reference Model (Network Seven-Layer Model)**

OSI (Open System Interconnect) is commonly known as the OSI reference model or network seven-layer structure, which is the network interconnect model researched by the ISO organization in 1985. This architectural standard defines the seven-layer framework (physical layer, data link layer, network layer, transport layer, session layer, presentation layer, and application layer) for network interconnection. For ease of understanding, the following diagram uses a logistics transportation process to correspond to each layer of the OSI model.

The following knowledge will use the concepts of these layers.



### ICMP (Internet Control Message Protocol) and ping Command

ICMP (Internet Control Message Protocol) is a sub-protocol of the TCP/IP protocol suite. It is used to transmit control messages between IP hosts and routers. Control messages refer to messages about the network itself, such as whether the network is available, whether the host is reachable, whether the route is available, etc. Although these control messages do not transmit user data, they play an important role in the transmission of user data.

#### - Learn more -

#### Visit the Wikipedia entry on ICMP.

We often use the ICMP protocol in the network, such as the **Ping** command (available in both Linux and Windows) we often use to check whether the network is available. This **Ping** process is actually the working process of the ICMP protocol. **ping** can test the connection speed between two devices and accurately report the time it takes for a packet to reach its destination and return to the sender's device. Although **ping** does not provide data about routing or hops, it is still a useful metric for measuring latency between two devices. Below we will learn how to implement **ping** requests on XIAO ESP32C3.

Before starting this attempt, we need to learn how to connect XIAO ESP32C3 with your Wi-Fi.

#### 3.4.2 Task 1: Using Wi-Fi Network on XIAO ESP32C3

XIAO ESP32C3 supports Wi-Fi connections with IEEE 802.11b/g/n. The following will introduce the basic knowledge of using Wi-Fi on this board.

#### - Attention -

Be careful when attempting to use the XIAO ESP32C3 development board as a hotspot (access point). Overheating issues may occur and lead to burns.

# Hardware Setup: Connect an Antenna to the XIAO ESP32C3 and Connect it to Your Computer

**Step 1:** Connect the provided Wi-Fi/ Bluetooth antenna to the IPEX connector on the development board.

**Step 2:** Connect the XIAO ESP32C3 to your computer via a USB Type-C data cable.





#### Software Setup: Add the ESP32 Board Package to the Arduino IDE

**Step 1:** Open the Arduino IDE preferences to add the Board Manager URL.

- For Windows users, first open your Arduino IDE, click on "File→Preferences" in the top menu bar, and copy the following URL into "Additional Board Manager URLs".
- For Mac users, first open your Arduino IDE, click on "Arduino IDE→Preferences" in the top menu bar, and copy the following URL into "Additional Board Manager URLs".

For Seeed Studio XIAO ESP32C3, copy the link below: <u>https://raw.githubusercontent.com/</u> <u>espressif/arduino-esp32/gh-pages/package\_esp32\_dev\_index.json</u> to the Board Manager URL bar and confirm, as shown in the figure below.

https://files.seeedstudio.com	m/arduino/package_seeeduino_boards_index.json	
https://github.com/earlephil	hower/arduino-pico/releases/download/global/package_rp2040_index.jsc	n
https://raw.githubuserconte	nt.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.jsc	n

**Step 2:** In the Arduino IDE menu, click "Tools→Board→Board Manager", type "esp32" into the search bar, find the latest version of ESP32 Arduino in the resulting entries, and click "Install". When the installation starts, you will see an output pop-up. Once the installation is complete, the "Installed" option will appear.

Step 3: Select the Board.

Navigate to "Tools > Board > ESP32 Arduino" and select "XIAO\_ESP32C3". The list will be a bit long, and you will need to scroll down to find it, as shown in the figure below.

K Arduino IDE File Edit Sketch Tools Help			
Auto Format 2017 Archive Sketch Manage Libraries 0-36 I Serial Plotter	sketch_may29c   Arduino IDE 2.1.0	mesuu carraa Senser's WEIZEN KITS ESP32 EDU Labglus mPython INEX OpenKB	
WF101 / WF1NA Firmware Updater Upload SSL Root Certificates and Source "Seeed XIAO.RP2040" > Boo Port > Construction > Add	ards Manager ◇※B Iafruit SAMD Boards >	WiFduino22 WiFduino223 IMBRIOS LOOSENS_VIP1 ProtoCentral HeathyP1 4	
Cert Board Impo     Deard Impo     Deard Impo     Deard Impo     Deard Impo     Sec     S	duino AVR Boards > p32 > p32 > eed nRF52 Boards > eed nRF52 mbed-enabled Boards > eed SAMD Boards >	ET-Board Derky uPesy ESP32 Wrover DevKit uPesy ESP32 Wrover DevKit K832-FT	
8 9 } 10 0		Deneyap Kart Deneyap Kart 1A Deneyap Kart 1A 2 Deneyap Mini	
Output Output voantxeaving peckages rp2044:pet-pccg1.5.9-b-c7bab52		Learnings Mari X2 Dennyas Kar G Trueverik ESP32 Universal IoT Driver Trueverik ESP32 Universal IoT Driver MK II ATMegaZero ESP32-52 Franziniho WIFI Franziniho WIFI TAMC Termod S3	
rp2040:ppt-mklitlefs01.5.0-b-c7bab52 rp2040:ppt-tf2/2/03.5.0-b-c7bab52 rp2040:ppt-tf2/2/03.5.0-b-c7bab52 rp2040:ppt-ppton30:1.5.0-b-c7bab52 rp2040:ppt-spencedgt.5.0-b-c7bab52 rp2040:ppt-picotoolg1.5.0-b-d3/2812 rp2040:pp2040:2.1	Processing Raspberry Pi	DPU (592) Sondf DUALR3 Lion Bit Dev Board Watchy Anr/an_CORE_ESP32C3 XIA0_ESP32C3 Comissión Espoin CNRS AWZETH	
		Department of Access Manual Car 22-32 Bee Motion 3 Bee Motion Mini Bee 53 unPhone 7 unPhone 8 Cytron Maker Feather AloT 53 RedPill(+) E9822-53 ESP-C3-M1-I-Kit	

#### Step 4: Add Port.

Check if the port connection is correct in the Arudino IDE. If not, you need to manually select.

For Windows systems, the serial port is displayed as "COM+number", as shown in the figure below.

• For Windows systems, the serial port is displayed as "COM+number", as shown in the figure below.



• On Mac or Linux systems, the port name is typically /dev/tty.usbmodem+number or /dev/ cu.usbmodem+number, as shown in the figure below.

	)			🔤 sketch_may29c   Arduino IDE 2.1.0
	→ ⊳	Ŷ	XIAO_ESP32C3 -	
	sketch_may	Ŷ	Unknown /dev/cu.Bluetooth-Incoming-Port	
	2 3 4 }	Ŷ	Unknown /dev/cu.HECATEGX07	run once:
	5 6 v	Ŷ	XIAO_ESP32C3 /dev/cu.usbmodem101	up repeatedly:
⊳ \$	8 9 }	Ŷ	Unknown /dev/cu.XiaomiBuds4Pro	un repeateuty.
Q	10	Sel	ect other board and port	

#### Scanning Nearby Wi-Fi Networks (STA Mode)

In this example, we will use the XIAO ESP32C3 to scan for available Wi-Fi networks in the area. The development board in this example will be configured in STA mode.

Step 1: Copy and paste the code below into the Arduino IDE.

```
#include "WiEi.h"
void setup()
{
 Serial.begin(115200);
 // Set WiFi to station mode and disconnect from an AP if it was previously con-
nected
 WiFi.mode(WIFI_STA);
 WiFi.disconnect();
 delay(100);
 Serial.println("Setup done");
}
void loop()
{
 Serial.println("scan start");
 // WiFi.scanNetworks will return the number of networks found
 int n = WiFi.scanNetworks();
 Serial.println("scan done");
 if (n == 0) {
 Serial.println("no networks found");
 } else {
 Serial.print(n);
 Serial.println(" networks found");
 for (int i = 0; i < n; ++i) {</pre>
 // Print SSID and RSSI for each network found
 Serial.print(i + 1);
 Serial.print(": ");
 Serial.print(WiFi.SSID(i));
 Serial.print(" (");
 Serial.print(WiFi.RSSI(i));
 Serial.print(")");
 Serial.println((WiFi.encryptionType(i) == WIFI AUTH OPEN)?" ":"*");
 delay(10);
 }
 Serial.println("");
 // Wait a bit before scanning again
 delay(5000);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L14\_Scanwifi\_XIAO\_en</u>

**Step 2:** Upload the code and open the serial monitor to start scanning for Wi-Fi networks, as shown in the figure below.



#### **Connecting to a Wi-Fi Network**

In this example, we will use the XIAO ESP32C3 to connect to your Wi-Fi network.

Step 1: Copy and paste the code below into the Arduino IDE.

```
#include <WiFi.h>
 = "your-ssid";
const char* ssid
const char* password = "your-password";
void setup()
{
 Serial.begin(115200);
 delay(10);
 // We start by connecting to a WiFi network
 Serial.println();
 Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");
```

```
Serial.println("IP address: ");
Serial.println(WiFi.localIP());
}
void loop()
{
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L14\_Connectwifi\_XIAO\_en</u>

Then, replace **your-ssid** in the code with the name of your Wi-Fi network, and replace **your-password** in the code with the password for your Wi-Fi network.

**Step 2:** Upload the code and open the serial monitor to check whether the development board is connected to the Wi-Fi network, as shown in the figure below.



Learn more

You can read the <u>Wiki documentation</u> for more about using the XIAO ESP32C3.

# 3.4.3 Task 2: Ping a Specified Website

With the knowledge above, we can now learn how to use the XIAO ESP32C3 to ping a specified website.

**Step 1:** Download and install the ESP32Ping library. Enter the URL <u>https://github.com/marian-craciunescu/ESP32Ping</u> to go to the GitHub page, click on Code→Download ZIP to download the resource pack to your local machine, as shown in the figure below.

> Code () Issues 12	11 Pull requests 4	Actions  Project	ts 1 () Security	/ 🗠 Insights		
1º master - 1º 1 brand	ch 🛇 1 tag	Go to file	Add file -	Code - About		
This branch is 52 commits a	head 4 commits hebing	Local	Codespaces (N	Ping library for ESP32 Arduino co	Ping library for ESP32 Arduino core	
	neud, 4 commus bernic	P- Clone		Readme		
marian-craciunescu III	ndate library properties			都 LGPL-2.1 license		
manan-craciunescu o	puate indrary.properties	HTTPS SSH GITHUD	CLI	• 72 stars	72 stars     72 stars	
examples	Adapt exemple	https://github.com/maria	an-craciunescu/ESP	다. 및 122 forks		
🗋 .gitignore	Port	Use Git or checkout with SVN us	sing the web URL.			
ESP32Ping.cpp	Override defaul	(#) Open with GitHub Desk	top	Releases 1		
ESP32Ping.h	Change average		•	16 Latest		
	LGPL license	Download ZIP		on Feb 10, 2021	on Feb 10, 2021	
README.md	Fix docu: int->fl	oat for averageTime();	2 yea	ars ago		
keywords.txt	Port		5 yea	ars ago Packages		
library.properties	Update library.p	roperties	la	No packages published		
🗅 ping.cpp	Merge pull requ	est #26 from eSolutionsGrup/f	eature/o la	ist year		
🗅 ping.h	Override default	t ping defaults	Languages			

After downloading, open the Arduino IDE, click on Sketch→Include Library→Add .ZIP Library, and choose the ZIP file you just downloaded.

Ś	Arduind	DIDE File	Edit	Sketch	Tools	Help			
		)		Verify/Co	mpile		¥R	Manage Libraries	<u></u> ک#۱
				Upload Configure	e and Up			Add .ZIP Library	
l		L14_Con 10 17 18 19 20 21 22 23	nnectw	Upload U Export Co Optimize Show Ske Include L Add File Seria	Ising Pro ompiled for Deb etch Fold ibrary	ogrammer Binary ugging der t(".");		Arduino libraries ArduinoOTA BluetoothSerial DNSServer EEPROM ESP Insights ESP RainMaker ESP32 ESP32 Async UDP	
	\$ €	24 25	Se	rial.pr	intln(	"");		ESP32 BLE Arduino ESPmDNS	
	Q	26 27 28 29 30 31 32	Se   Se   Se   Se   Se   Se   Se   Se	erial.pr erial.pr erial.pr .cop()	intln( intln( intln(	"WiFi co "IP addr WiFi.loc	onnected ress: ") calIP())	Ethernet FFat FS HTTPClient HTTPUpdate HTTPUpdateServer I2S	
		Output	Serial I	Monitor				LittleFS	

**Step 2:** Copy and paste the code below into the Arduino IDE. This code sets the test website to www.seeedstudio.com. Remember to replace your-ssid in the code with your Wi-Fi network name and your-password in the code with your Wi-Fi password.

```
// esp32 2.0.4 - https://github.com/espressif/arduino-esp32
// Board:
// XIAO ESP32C3
// Libraries:
// ESP32Ping 1.6 - https://github.com/marian-craciunescu/ESP32Ping
// Includes
#include <WiFi.h>
#include <ESP32Ping.h>
static constexpr unsigned long INTERVAL = 3000; // [msec.]
static const char WIFI_SSID[] = "your-ssid";
static const char WIFI_PASSPHRASE[] = "your-password";
static const char SERVER[] = "www.google.com";
void setup()
{
 Serial.begin(115200);
 delay(1000);
 Serial.println();
 Serial.println();
 Serial.println("WIFI: Start.");
 WiFi.mode(WIFI STA);
 if (WIFI_SSID[0] != '\0')
 {
 WiFi.begin(WIFI_SSID, WIFI_PASSPHRASE);
 }
 else
 {
 WiFi.begin();
 }
}
void loop()
{
 static int count = 0;
 const bool wifiStatus = WiFi.status() == WL CONNECTED;
 const int wifiRssi = WiFi.RSSI();
 const bool pingResult = !wifiStatus ? false : Ping.ping(SERVER, 1);
 const float pingTime = !pingResult ? 0.f : Ping.averageTime();
 Serial.print(count);
 Serial.print('\t');
 Serial.print(wifiStatus ? 1 : 0);
 Serial.print('\t');
 Serial.print(wifiRssi);
 Serial.print('\t');
 Serial.print(pingResult ? 1 : 0);
 Serial.print('\t');
 Serial.println(pingTime);
 count++;
```

```
delay(INTERVAL);
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L14\_Ping\_XIAO\_en</u>

**Step 3:** Upload the code and open the serial monitor to check the ping results, as shown in the figure below.



# 3.4.4 Project Creation: Using XIAO ESP32C3 to Make HTTP GET and HTTP POST Requests

#### **Introduction to HTTP Protocol**

HTTP stands for HyperText Transfer Protocol. It's an application-layer protocol for distributed, collaborative, and hypermedia information systems. HTTP is the most widely used network transmission protocol on the Internet, and all WWW files must comply with this standard.

HTTP is designed for communication between Web browsers and Web servers, but it can also be used for other purposes. HTTP is a protocol that uses TCP/IP to transmit data (such as HTML files, image files, query results, etc.).

Despite its wide use, HTTP has significant security flaws, mainly its plain text data transmission and lack of message integrity checks. These are exactly the two most critical security aspects in emerging applications like online payment, online trading, Internet of Things, etc. Browsers like Google Chrome, Internet Explorer, and Firefox issue warnings about insecure connections when visiting websites with mixed content composed of encrypted and unencrypted content using HTTP.

#### **Introduction to HTTPS Protocol**

HTTPS stands for HyperText Transfer Protocol Secure. It's a protocol for secure communication over a computer network. HTTPS communicates via HTTP but uses SSL/TLS to encrypt packets. The main purpose of HTTPS is to authenticate the website server's identity and protect the privacy and integrity of the exchanged data.



#### **HTTP Request Methods**

According to the HTTP standard, HTTP requests can use multiple request methods.

HTTP1.0 defined three request methods: GET, POST, and HEAD.

HTTP1.1 added six new request methods: OPTIONS, PUT, PATCH, DELETE, TRACE, and CONNECT.

No.	Method	Description
1	GET	Requests specified page information and returns the entity body.
2	HEAD	Similar to a GET request, but the response returned doesn't contain specific content, used to obtain headers.
3	POST	Submits data for processing to a specified resource (e.g., submits a form or uploads a file). The data is included in the request body. POST requests may result in the creation of a new resource and/or the modification of an existing resource.
4	PUT	The data sent from the client to the server replaces the content of a specified document.
5	DELETE	Requests the server to delete a specified page.
6	CONNECT	Reserved in HTTP/1.1 for proxy servers that can switch the connection to a pipe mode.
7	OPTIONS	Allows the client to view the server's capabilities.
8	TRACE	Echoes the request received by the server, mainly used for testing or diagnosis.
9	РАТСН	It's a supplement to the PUT method, used to partially update a known resource.

We've already learned how to connect to a Wi-Fi network using XIAO ESP32C3. Now, let's try some more complex operations based on the network. The following sections will introduce how to use XIAO ESP32C3 to send HTTP GET and HTTP POST requests.

#### Task 3: Using XIAO ESP32C3 to Send an HTTP GET Request

To send an HTTP GET request, a corresponding backend server that supports the request is

required. For convenient testing, we can set up a backend server on our own PC, allowing XIAO ESP32C3 to send an HTTP GET request to the PC through the local Wi-Fi connection.

There are many ways to set up a backend service. In this case, we'll use the popular Python web framework — FastAPI to set up the backend server. To learn more about this tool, visit its <u>official</u> <u>documentation</u>.

#### Setting Up a Backend Server with FastAPI

Here is the Python server code.

```
from typing import Union
from pydantic import BaseModel
from fastapi import FastAPI
import datetime
app = FastAPI()
items = \{\}
class Sensor_Item(BaseModel):
 name: str
 value: float
@app.on_event("startup")
async def startup event():
 items["sensor"] = {"name": "Sensor", "Value":0}
@app.get("/items/{item id}")
async def read_items(item_id: str):
 return items[item_id],datetime.datetime.now()
@app.post("/sensor/")
async def update sensor(si: Sensor Item):
 items["sensor"]["Value"] = si.value
 return si
@app.get("/")
def read root():
 return {"Hello": "World"}
```

This code snippet, implemented using the Python FastAPI framework, can return the latest information of the Sensor stored on the backend server when we use a get request on <a href="http://domain/items/sensor">http://domain/items/sensor</a>. When we use post to send data to <a href="http://domain/sensor/">http://domain/sensor/</a>, it can modify and record the latest Sensor value. The operation steps are as follows:

**Step 1:** Create a python file named main.py locally, copy and paste the code above into main.py. Then, on your PC, open the terminal and execute the following commands to install FastAPI.

pip install fastapi
pip install "uvicorn[standard]"

Step 2: Execute the following command to start the backend service and local monitoring.

```
uvicorn main:app --reload --host 0.0.0.0
```
- Attention -

When running the command above, make sure the terminal is currently in the directory where main: app resides. If there is a prompt during running:

ERROR: [Errno 48] Address already in use

This means the current address is already occupied and there is an address conflict. You can specify a specific port as shown in the command below.

uvicorn main:app --reload --host 0.0.0.0 --port 1234

If the [Errno 48] error still appears, you can modify the port number after port.

The prompt information after the command is successfully run is as follows

```
INF0: Will watch for changes in these directories: ['']
INF0: Uvicorn running on http://0.0.0.0:1234 (Press CTRL+C to quit)
INF0: Started reloader process [53850] using WatchFiles
INF0: Started server process [53852]
INF0: Waiting for application startup.
INF0: Application startup complete.
```

The backend server for testing is now running normally.

#### Using XIAO ESP32C3 to Send an HTTP GET Request

Next, we'll perform a request test on XIAO ESP32C3.

The GET method should only be used for reading data, and should not be used in operations that generate "side effects". GET requests directly issued by browsers can only be triggered by a URL. If you want to carry some parameters outside of the URL in GET, you can only rely on the querystring (query string) attached to the URL.

**Step 1:** Copy and paste the following code into the Arduino IDE. This code sets the tested serverName to http://192.168.1.2/items/sensor. The 192.168.1.2 needs to be replaced with the IP address of your PC acting as the backend server. To get the IP address of your PC, Windows users can enter the ipconfig command in the command line window, and Mac users can enter the ifconfig command in the terminal window. Remember to change your-ssid in the code to your Wi-Fi network name and your-password to the corresponding Wi-Fi password.

```
#include "WiFi.h"
#include <HTTPClient.h>

const char* ssid = "your-ssid";
const char* password = "your-password";
String serverName = "http://192.168.1.2/items/sensor";
unsigned long lastTime = 0;
unsigned long timerDelay = 5000;

void setup()
{
 Serial.begin(115200);
 WiFi.begin(ssid, password);
 Serial.println("Connecting");
```

```
while(WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 Serial.println("");
 Serial.print("Connected to WiFi network with IP Address: ");
 Serial.println(WiFi.localIP());
 Serial.println("Timer set to 5 seconds (timerDelay variable), it will take 5
seconds before publishing the first reading.");
 Serial.println("Setup done");
}
void loop()
{
 if ((millis() - lastTime) > timerDelay) {
 //Check WiFi connection status
 if(WiFi.status() == WL CONNECTED){
 HTTPClient http;
 String serverPath = serverName ;
 http.begin(serverPath.c_str());
 int httpResponseCode = http.GET();
 if (httpResponseCode>0) {
 Serial.print("HTTP Response code: ");
 Serial.println(httpResponseCode);
 String payload = http.getString();
 Serial.println(payload);
 }
 else {
 Serial.print("Error code: ");
 Serial.println(httpResponseCode);
 }
 http.end();
 }
 else {
 Serial.println("WiFi Disconnected");
 lastTime = millis();
 }
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L14\_HTTPget\_XIAO\_en</u>

#### - Attention -

We need to change the serverName in the Arduino code to the IP address of the host running the backend service. The XIAO ESP32C3 needs to be on the same local area network as it. If the local area network IP of the backend server (in this example, your PC) is 192.168.1.2, then the GET request interface is http://192.168.1.2/items/sensor, and other interfaces are similar. If you specified a port when running the backend service and

local monitoring, the GET request interface would be http://192.168.1.2:1234/items/ sensor.

**Step 2:** Upload the code to XIAO ESP32C3 in the Arduino IDE. After the upload is successful, open the serial monitor to check the result returned by our backend server after the GET is issued, as shown in the figure below.



The prompt HTTP Response code: 200 means the request has been successful, and our XIAO ESP32C3 has successfully gotten data from the server.

## Task 4: Using XIAO ESP32C3 to Send an HTTP POST Request

Submit data to a specified resource and request the server to process it (for example, submit a form or upload a file). The data is included in the request body. This request may create new resources or modify existing resources, or both. Each time it is submitted, the form data is encoded into the body of the HTTP request by the browser. The body of a POST request issued by a browser mainly has two formats, one is application/x-www-form-urlencoded used to transmit simple data, roughly in the format of key1=value1&key2=value2. The other is for transmitting files and will use the multipart/form-data format. The latter is adopted because the encoding method of application/x-www-form-urlencoded is very inefficient for binary data like files.

Next, we will submit experimental data to the backend server built on our machine in a manner similar to submitting a form, and verify whether the backend server has received the data.

**Step 1:** Before starting this example, make sure that the backend server built with FastAPI in the previous step is running normally. If not, please refer to the above instructions to start the server program.

**Step 2:** Copy and paste the following code into the Arduino IDE. This code sets the tested serverName to http://192.168.1.2/sensor/. The 192.168.1.2 needs to be replaced with the IP address of your PC acting as the backend server. Remember to change your-ssid in the code to your Wi-Fi network name and your-password to the corresponding Wi-Fi password.

```
#include <WiFi.h>
#include <HTTPClient.h>
const char* ssid = "your-ssid";
const char* password = "your-password";
const char* serverName = "https://192.168.1.2/sensor/";
unsigned long lastTime = 0;
unsigned long timerDelay = 5000;
void setup() {
 Serial.begin(115200);
 WiFi.begin(ssid, password);
 Serial.println("Connecting");
 while(WiFi.status() != WL CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");
 Serial.print("Connected to WiFi network with IP Address: ");
 Serial.println(WiFi.localIP());
 Serial.println("Timer set to 5 seconds (timerDelay variable), it will take 5 sec-
onds before publishing the first reading.");
}
void loop() {
 //Send an HTTP POST request every 10 minutes
 if ((millis() - lastTime) > timerDelay) {
 //Check WiFi connection status
 if(WiFi.status() == WL CONNECTED){
 WiFiClient client;
 HTTPClient http;
 http.begin(client, serverName);
 http.addHeader("Content-Type", "application/json");
 int httpResponseCode = http.POST("{\"name\":\"sensor\",\"value\":\"123\"}");
 Serial.print("HTTP Response code: ");
 Serial.println(httpResponseCode);
 // Free resources
 http.end();
 }
 else {
 Serial.println("WiFi Disconnected");
 lastTime = millis();
 }
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L14\_HTTPpost\_XIAO\_en</u> **Step 2:** Upload the code to XIAO ESP32C3 using the Arduino IDE. After a successful upload, open the Serial Monitor to examine the result returned by our backend server in response to the GET request. The image below illustrates the process.

••	)	L14_HTTPpost_XIAO_en   Arduino IDE 2.1.0		
	€ €	மு XIAO_ESP32C3 ▼		∿ .©.
	L14_HTT	post_XIAO_en.ino debug_custom.json		
-	1 2 3	#include <wifi.h> #include <httpclient.h></httpclient.h></wifi.h>		
	4	const char∗ ssid = "SEEED-MKT"; const char∗ password = "edgemaker2023";		
ШЛ	6 7	<pre>const char* serverName = "http://192.168.6.90:1234/sensor/";</pre>		
⇒	8 9 10	unsigned long lastTime = 0; unsigned long timerDelay = 5000:		
Q	11 12	void setup() {		
	13 14 15	Serial.begin(115200);		
	16 17	<pre>Serial.println("Connecting"); while(WiFi.status() != WL_CONNECTED) {</pre>		
	Output	Serial Monitor ×		× ⊘ ≣×
	Message	Enter to send message to 'XIAO_ESP32C3' on '/dev/cu.usbmodem101')	New Line 🔻	115200 baud -
	18:25:09 18:25:09 18:25:09 18:25:10 18:25:10 18:25:10 18:25:20	.474 -> Connecting .474 -> .474 -> .474 -> Connected to WiFi network with IP Address: 192.168.7.143 .474 -> Timer set to 5 seconds (timerDelay variable), it will take 5 seconds .859 -> HTTP Response code: 200 .884 -> HTTP Response code: 200 .925 -> HTTP Response code: 200	s before publishi	ng the first rea
8				

The message **\*\*HTTP Response code: 200\*\*** signifies a successful request. On your local PC, open a browser and navigate to **\*\*http://192.168.1.2/items/sensor\*\*** (please replace the IP address according to your actual PC's IP address, and if a port has been set, append a colon followed by the designated port number after the IP address). You should now see the most recent data sent by the XIAO ESP32C3. Since XIAO sends data every 5 seconds, you can always view the most recent data received by the backend server by refreshing the current page (the timestamp of the data will change).

•••	·	<	>	0	G	Ø	(1) 192.168.6.90:1234/items/sensor	c	₾	+	Ē
[{"name":'	Sensor",	"Valu	ie":12	23.0},	2023	-05-2	9118:32:25.833016"]				

We have now successfully sent data from XIAO ESP32C3 to the local backend server.

# 3.5 Telemetry and Commands using the MQTT protocol with XIAO ESP32C3

In the previous section, we learned how to send HTTP GET or POST requests from the XIAO ESP32C3 to a local machine on a local area network via Wi-Fi. In this section, we'll step through: communication protocols, Message Queuing Telemetry Transport (MQTT), telemetry (data gathered from sensors and sent to the cloud), and commands (messages sent from the cloud to a device instructing it to do something).

# 3.5.1 Background Knowledge

#### **IoT (Internet of Things)**

The "I" in IoT stands for Internet—cloud connectivity and services that enable many of the functions of IoT devices, from gathering sensor measurements linked to devices, to sending messages to control actuators. IoT devices typically connect to a single IoT cloud service using standard communication protocols, and this service is tightly integrated with the rest of your IoT application, from AI services making intelligent decisions around data, to web applications for control or reporting.

Data collected from sensors and sent to the cloud is called telemetry.

IoT devices can also receive information from the cloud. This information typically consists of commands—instructions to perform internal actions (such as rebooting or updating firmware) or to actuate (e.g., turning on a light).

#### **Communication Protocols**

There are many popular communication protocols that IoT devices use to communicate with the internet. The most popular are based around the publishing/subscribing of messages through some agent: IoT devices connect to the agent, publish telemetry data and subscribe to commands. Cloud services also connect to the agent, subscribe to all telemetry information, and publish commands to specific devices or groups of devices, as shown in the figure below.



MQTT is the most popular communication protocol for IoT devices and will be covered in this section. Other protocols include AMQP and HTTP/HTTPS, which we introduced in the previous section.

## Message Queuing Telemetry Transport (MQTT)

**MQTT** is short for Message Queuing Telemetry Transport. It is a messaging protocol based on the publish/subscribe paradigm under the ISO standard: ISO/IEC PRF 20922. It can be seen as a "bridge for data delivery". It operates on top of the TCP/IP protocol stack and is a publish/subscribe type messaging protocol designed for remote devices with poor hardware performance and poor network conditions. It is a lightweight, open standard messaging transport protocol that can send messages between devices. Originally designed in 1999 for monitoring oil pipelines, it was published as an open standard by IBM 15 years later.

The biggest advantage of MQTT is that it provides a real-time and reliable messaging service for connecting remote devices with minimal code and limited bandwidth. As a low-overhead, low-bandwidth consumption instant communication protocol, it is widely used in IoT, small devices, mobile applications, and so on.

MQTT has one broker and multiple clients. All clients connect to the broker, which then routes messages to the relevant clients. Messages are routed using named topics, not sent directly to a single client. Clients can publish to a topic, and any client subscribed to that topic will receive the message.



Do some research. If you have a large number of IoT devices, how can you ensure that your MQTT broker can handle all messages?

#### Some Open Source MQTT Brokers

While we can set up our own MQTT broker if circumstances allow, you might not be ready to delve into server and application setup yet. If you're just learning, you can start with some open source MQTT brokers.

#### Eclipse Mosquitto https://www.mosquitto.org/

This is an open source MQTT broker. Instead of dealing with the complexities of setting up an MQTT broker as part of this task, this test broker is publicly available at <u>test.mosquitto.org</u> and doesn't require account setup. It's a great tool for testing MQTT clients and servers.

🗧 🔵 🌒 👫 Eclipse Mo	osquitto	× +						Ý
$\leftarrow$ $\rightarrow$ C $\triangleq$ mosqui	itto.org						5	i o 🖈 🗯 🖬 🕅 i
((m) mosouitto	ECLIPSE	cedalo			Hom	e Blog	Download	Documentation $$
			Eclipse An open se	e Mosquitto™ ource MQTT broker				
Eclipse Mosqui versions 5.0, 3. board compute The MQTT prot This makes it si phones, embed The Mosquitto mosquitto_pub	itto is an open 1.1 and 3.1. M ers to full serve tocol provides uitable for Inte dded compute project also p and mosquit	source (EPL/EDL lice osquitto is lightweight ers. a lightweight method ernet of Things mess ers or microcontrollers rovides a C library for to_sub command line	ensed) message brok t and is suitable for u d of carrying out mes aging such as with lo s. rimplementing MQT MQTT clients.	ker that implements t ise on all devices fror ssaging using a publi w power sensors or i T clients, and the ver	the MQTT proto m low power si ish/subscribe n mobile devices ry popular	ngle nodel. such as	Mosquitto is foundation, project.	part of the Eclipse and is an iot.eclipse.org eclable evelopment is driven by also offer support, rvices and features, ting and high-
			Down	load and Se	curity			
Mosquitto i	is highly porta	ble and available for	a wide range of platf	orms.				
Go to t	the dedicated	download page to fir	nd the source or bina	ries for your platform	n.			
<ul> <li>Read t</li> </ul>	the Change Lo	g to find out about re	ecent releases.					
<ul> <li>Use th</li> </ul>	ne security pag	ge to find out how to	report vulnerabilities	or responses to past	t security issue	s.		

#### shiftr.io

An IoT platform for interconnected projects, quickly connect hardware and software with its cloud service and desktop applications. The platform also provides a clear view of all connections, topics, and messages in the network through real-time charts. The <u>shiftr.io</u> broker supports MQTT and HTTP for publishing, subscribing, and retrieving messages, and the platform supports free accounts, enough for us to learn and use. They also provide a public server at <u>public.cloud.</u> <u>shiftr.io</u> with username **public** on ports 1883 (MQTT) and 8883 (MQTTS). The animated view of connected services and data being exchanged on the public server is very cool, as shown in the image below.



#### HiveMQ

<u>HiveMQ</u> is a cloud-based MQTT platform, offering scalable, secure, and reliable IoT communication services. HiveMQ can help enterprises and developers quickly build and manage IoT applications, supporting millions of devices and messages.

•••	• • • • • • • • • • • • • • • • • • •									
		mqtt-dashboard.com				ង៤ 🖈 🖬 💱 🗉				
		iiveMQ   Public Broker   MQTT Dasl	hboard			HiveMQ cluster (3 nodes)				
Broker					Getting Started					
HIVEM	Q	The MQTT Dashboard utilizes th to publish to the broker.	he HiveMQ MQTT broker. You can	use any MQTT client or library	nt to know how it works take a look at the MQTT Essentials which digestable manner.					
🔥 Home		Testing and usage is for free bu is allowed to subscribe to every HiveMQ broker. Please consider	t please do not use it for sensitive topic, including wildcard. Feel free to add a reconnect logic to your of	information because everybody to play with MQTT and the lient because we may update	You can use our MQTT Websor assorted MQTT client tools with	bsocket client to publish and subscribte to the broker. A list of with tutorials about their features can be found in the MQTT Toolbox.				
§ Legal		the underlaying HiveMQ instance	e at any time, so we cannot promi	se 100% uptime.	If you want to use MQTT in you Encyclopedia, which contains a	r software project you can take a look at the MQTT Client Library a range of HowTos on MQTT client libraries for different.				
		scalable and secure MQTT clou ready to connect up to 100 ioT (	21 Cloud Platform HiveMQ Cloud d-broker clusters that are built for p devices at no cost (no credit card n devices at no cost (no credit card n	you can create reliable, production. Sign up and you are equired).	programming languages.					
	- 1	Outgoing Messages	Incoming Messages	Clients		MQTT connection settings				
(B) HIVEN	1Q	11392393031	14861745832			Host: brokerhiverng.com TCP Port: 1883				
HiveMQ Cloud Bar	sic is	P. Annolations	Participant Management			Websocket Port: 8000 TLS TCP Port: 8883				
MQTT clients		245490	53342			TLS Websocket Port: 8884				
Learn more		240470	00042							
		Bytes Read	Bytes Written							
		1.5 TB	1.63 TB							
		Queued Messages	MQTT Sessions							
		6457	62299	1	30965					
				Ac	tive					

# 3.5.2 Task 1: Connect the XIAO ESP32C3 to the MQTT Broker

The first step to adding internet control to your smart temperature and humidity meter is to connect the XIAO ESP32C3 to an MQTT broker.

In this part of the section, you'll connect your smart temperature and humidity meter from Section 2.2 to the internet, enabling it to provide telemetry and be remotely controlled. Later in this section, your device will send a telemetry message via MQTT to a public MQTT broker, which will be received by some server code you'll write. This code will check the temperature and humidity values, and send a command message to the device, telling it to turn a buzzer on or off.



One real-world use of this setup would be in a large indoor space with many temperature and humidity sensors, such as a farm. Before deciding to turn on air conditioning, data can be gathered from multiple temperature and humidity sensors. If only one sensor reading exceeds the threshold, but other sensor readings are normal, this can prevent the entire air conditioning system from being turned on.

Can you think of other situations where an evaluation of data from multiple sensors is required before issuing a command?

Remember, this test broker is public and unsecure, and anyone can listen in on what you're publishing, so it should not be used for any data that needs to be kept confidential.

Follow the related steps below to connect your device to the MQTT broker we introduced earlier: <u>public.cloud.shiftr.io.</u>

# Add the arduino-mqtt library

Before you start programming the XIAO ESP32C3 with the Arduino IDE, you need to add the necessary libraries. Type the library URL <u>https://github.com/256dpi/arduino-mqtt</u> into your browser's address bar to go to the GitHub page. Click on **Code→Download ZIP** to download the resource pack arduino-mqtt-master.zip to your local machine, as shown in the image below.

C      G github.com/256dpl	/arduino-mqtt	Codesnaces Marketniace Evoloce	₽0☆ <b>≯</b> □ <b>₽</b>			
256dpi/arduino-mqtt	Public Pull requests 3 Q Discussions	Actions      Projects	-) ♀ Ferk 205   +) ☆ Star 854   +			
P master - P 1 branch S	A8 tags	Go to file Add file • Code Local Codespaces (New)	About MQTT library for Arduino			
.github/workflows	added MKR NB 1500 examp	E Clone	matt iot arduino ⊡ Readme 42 MiT license ☆ 854 stars			
examples	added MKR NB 1500 examp	HTTPS SSH GitHub CLI				
src src	Include functional API also f	https://github.com/256dpi/arduino-mqtt.gi				
.editorconfig	updated editorconfig	Use Git or checkout with SVN using the web URL.	9 205 forks			
gitignore	removed Gulpfile	(2) Open with GitHub Desktop				
CMakeLists.txt	added MKR NB 1500 examp		Releases 48			
LICENSE.md	Create LICENSE.md	Download ZIP	D x250 (Intert)			
Makefile	updated lwmqtt	2 years ago	on Feb 22, 2021			
README.md	added MKR NB 1500 example	a 3 months age	+ 47 releases			
library.properties	bumped version	last yea	r			
E README.md			Packages No packages published			
and since ments						

From the menu bar, select Sketch→Include Library→Add .ZIP Library to add the resource pack arduino-mqtt-master.zip you downloaded in the previous step. Continue until you see a message indicating successful library loading.

#### Run the ESP32 MQTT example

After the library is loaded successfully, open the "ESP32DevelopmentBoard" example in the Arduino IDE through the following path: File→Examples→MQTT→ESP32DevelopmentBoard, as shown in the image below.



After the example program is opened, you can see the program as shown below. Then change the ssid in the code to your Wi-Fi network name, and change the pass in the code to the corresponding Wi-Fi password for your Wi-Fi network.

```
// This example uses an ESP32 Development Board
// to connect to shiftr.io.
//
// You can check on your device after a successful
// connection here: https://www.shiftr.io/try.
//
// by Joël Gähwiler
// https://github.com/256dpi/arduino-mqtt
#include <WiFi.h>
#include <MQTT.h>
```

```
const char ssid[] = "ssid";
const char pass[] = "pass";
WiFiClient net:
MQTTClient client;
unsigned long lastMillis = 0;
void connect() {
 Serial.print("checking wifi...");
 while (WiFi.status() != WL CONNECTED) {
 Serial.print(".");
 delay(1000);
 }
 Serial.print("\nconnecting...");
 while (!client.connect("arduino", "public", "public")) {
 Serial.print(".");
 delay(1000);
 }
 Serial.println("\nconnected!");
 client.subscribe("/hello");
 // client.unsubscribe("/hello");
}
void messageReceived(String &topic, String &payload) {
 Serial.println("incoming: " + topic + " - " + payload);
 // Note: Do not use the client in the callback to publish, subscribe or
 // unsubscribe as it may cause deadlocks when other things arrive while
 // sending and receiving acknowledgments. Instead, change a global variable,
 // or push to a queue and handle it in the loop after calling `client.loop()`.
}
void setup() {
 Serial.begin(115200);
 WiFi.begin(ssid, pass);
 // Note: Local domain names (e.g. "Computer.local" on OSX) are not supported
 // by Arduino. You need to set the IP address directly.
 client.begin("public.cloud.shiftr.io", net);
 client.onMessage(messageReceived);
 connect();
}
void loop() {
 client.loop();
 delay(10); // <- fixes some issues with WiFi stability</pre>
 if (!client.connected()) {
 connect();
 }
 // publish a message roughly every second.
 if (millis() - lastMillis > 1000) {
```

```
lastMillis = millis();
client.publish("/hello", "world");
}
}
```

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L15\_ESP32DevelopmentBoard\_XIAO\_en</u>

Run the example and check the serial monitor for: **connected**!. If you see a connected client and flowing messages in the live chart, your XIAO is continuously sending data to this public MQTT broker!



You can see the messages you sent by accessing <u>public.cloud.shiftr.io</u> in your browser. However, because this is a public broker, your device will quickly get lost in the crowd.



Keep in mind, this test broker is public and insecure. Anyone can listen to what you're publishing, so it should not be used for anything requiring confidentiality.

# 3.5.3 Deep Dive into MQTT

Topics can have a hierarchy, and clients can use wildcards to subscribe to different levels of different hierarchies. For example: you can send temperature telemetry to the /telemetry/ temperature topic, humidity data to the /telemetry/humidity topic, and then subscribe to the /telemetry/\* topic in your cloud application to receive both temperature and humidity telemetry. When messages are sent, a Quality of Service (QoS) can be specified which determines the guarantee of message delivery.

- At most once: The message is sent only once, and no additional steps are taken by the client and the broker to confirm delivery (Fire and Forget).
- At least once: The message is retried by the sender until it receives an acknowledgment (Acknowledged delivery).
- Exactly once: A two-level handshake is performed by the sender and receiver to ensure that only one copy of the message is received (Assured delivery).

#### In what scenarios might you need to deliver messages on a Fire and Forget basis?

Although MQTT (Message Queuing Telemetry Transport) has "Message Queuing" in its name (the first two letters of MQTT), it does not actually support message queues. This means that if a client disconnects and then reconnects, it will not receive messages that were sent while it was disconnected, except for those messages that it had already begun processing using the QoS process. A retain flag can be set on a message. If this flag is set, the MQTT broker will store the last message sent on a topic with this flag, and will send it to any clients who subsequently subscribe to that topic. This way, clients always receive the latest message.

MQTT also supports a keep-alive feature to check if the connection is still online during long intervals between messages.

MQTT connections can be public, or encrypted and protected using usernames, passwords, or certificates.

MQTT communicates over TCP/IP, the same underlying network protocol as HTTP, but on a different port. You can also communicate with web applications running in a browser over MQTT on websockets, or in situations where firewalls or other network rules block standard MQTT connections.

#### 3.5.4 Telemetry

The word "telemetry" comes from Greek roots meaning "remote measurement". Telemetry refers to the act of collecting data from sensors and sending it to the cloud.

One of the earliest telemetry devices was invented in France in 1874, sending realtime weather and snow depth data from Mont Blanc to Paris. As there was no wireless technology at the time, it used a physical wire.

Let's go back to the smart thermostat example from Section 1.1.

The thermostat has temperature sensors to collect telemetry data. It likely has a built-in



temperature sensor and may connect to multiple external temperature sensors via wireless protocols such as Low Energy Bluetooth (BLE).

An example of the telemetry data it sends could be:

Name	Value	Description
AC_Temperature	18°C	The temperature measured by the thermostat's built-in temperature sensor
Living_Room_ Temperature	19°C	The temperature measured by a remote temperature sensor named livingroom , indicating the room it is in
Bedroom_Temperature	21°C	The temperature measured by a remote temperature sensor named bedroom , indicating the room it is in

Then, the cloud service can use this telemetry data to decide what commands to send to control cooling or heating.

# 3.5.5 Task 2: Sending Telemetry Information from XIAO to MQTT Broker

The next part of adding internet control to your smart hygrothermograph is sending the temperature and humidity telemetry data to the telemetry topic of the MQTT broker. Replace the XIAO of your smart hygrothermograph device from Section 2.2 with the XIAO ESP32C3, as shown in the image below.



Load the following program into the Arduino IDE to test sending telemetry data from your device to the MQTT broker. Note that in this example, we're trying a different MQTT broker than in Task 1: **broker.hivemq.com**, and we've set **XIA0\_ESP32C3\_Telemetry/** as the subscription name.

```
// Includes
#include <WiFi.h>
#include <PubSubClient.h>
#include <Wire.h>
#include "DHT.h"
#define DHTTYPE DHT20
DHT dht(DHTTYPE);
const char* ssid = "ssid";
const char* password = "pass";
const char* mqtt_server = "broker.
hivemq.com";
WiFiClient espClient;
PubSubClient client(espClient);
long lastMsg = 0;
char msg[50];
int value = 0:
float temperature = 0;
float humidity = 0;
void setup() {
 Serial.begin(115200);
 setup_wifi();
 client.setServer(mgtt server, 1883);
 Wire.begin();
 dht.begin();
}
void setup wifi() {
 delay(10);
 // We start by connecting to a WiFi
network
 Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL CONNECT-
ED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}
void reconnect() {
```

// Loop until we're reconnected
while (!client.connected()) {

```
Serial.print("Attempting MQTT con-
nection...");
 // Attempt to connect
 if (client.connect("XIA0 ESP32")) {
 Serial.println("connected");
 // Subscribe
 client.subscribe("XIA0_ESP32/
LEDOUTPUT"):
 } else {
 Serial.print("failed, rc=");
 Serial.print(client.state());
 Serial.println(" try again in 5
seconds");
 // Wait 5 seconds before retry-
ina
 delay(5000);
 }
 }
}
void loop() {
 if (!client.connected()) {
 reconnect();
 }
 client.loop();
 long now = millis();
 float temp_hum_val[2] = {0};
 if (now - lastMsg > 5000) {
 lastMsg = now;
 dht.readTempAndHumidity(temp hum
val);
 temperature = temp_hum_val[1];
 char tempString[8];
 dtostrf(temperature, 1, 2, temp-
String):
 Serial.print("Temperature: ");
 Serial.println(tempString);
 client.publish("XIA0_ESP32C3_Te-
lemetry/Temperaturedataread", temp-
String);
 humidity = temp_hum_val[0];
 char humString[8];
 dtostrf(humidity, 1, 2, hum-
String):
 Serial.print("Humidity: ");
 Serial.println(humString);
 client.publish("XIA0_ESP32_Teleme-
try/Humiditydataread", humString);
 }
```

}

Get this program from Github <u>https://github.com/mouseart/XIAO-Mastering-Arduino-and-</u> <u>TinyML/tree/main/code/L15\_MQTTTelemetry\_XIAO\_en</u>

Because this example relies on the PubSubClient.h library, if you try to compile it directly, you will encounter the error "PubSubClient.h: No such file or directory". To resolve this issue, follow the steps below to install the library.

- 1. Open the Arduino IDE.
- 2. Go to "Sketch" -> "Include Library" -> "Manage Libraries".
- 3. In the Library Manager, type "PubSubClient" in the search bar.
- 4. Look for the "PubSubClient" library by Nick O'Leary and click on it.
- 5. Click the "Install" button to install the library.

Then modify the **ssid** in the code to your Wi-Fi network name and **pass** to your Wi-Fi password corresponding to your Wi-Fi network name.

After successfully uploading the program, open the serial monitor. If all goes well, you will see the device start sending temperature and humidity data, as shown in the image below.



How can you see the sensor data from another platform? There are many ways, such as  $\underline{MQTT}$   $\underline{X}$ . After downloading and installing the software suitable for your PC system, the interface is as shown in the image below.



Clicking the + New Connection button will bring you to the connection creation window, as shown in the image below. Fill in XIAO-DHT20 in the Name box as the connection name. The Host is broker.hivemq.com that we set in the program, no other settings are needed, click Connect in the upper right corner.

•••	Connections New Collection	< Back	New	Connect
×		General		
		* Name XIAO - DHT20	d	D
		Client ID mqttx_aa56d643	c	0 0
ይ		• Host mqtt:// V	broker.emqx.io	
		* Port 1883	×	
		Username		
		Password		
	No Data	SSL/TLS 🔵 true 🔹 false		
	110 01318	Advanced A		
		Connect Timeout (s) 10	0	
		Keep Alive (s) 60		
		Clean Session 🧿 true 🔷 fals	e	
Ū		Auto Reconnect 🕓 true 🔹 fals	e	
		MQTT Version 3.1.1	~	
		Last Will and Testament A		

Create a new subscription, showing all the information under XIA0\_ESP32C3\_Telemetry/, as shown in the image below.

•••	Connections New Collection	XIAO - DHT20 🛛 😽			▶ ⊿ ◻ …
×	XIAO - DHT20@brok	+ New Subscription	Plaintext ~		All Received Published
		New Subscription		×	
ይ		* Topic			
+		XIAO_ESP32_Telemetry/#	Color	_	
<>>		0	✓ #34C388		
8		Alias			
0			Cancel	Confirm Retain	
0		4	"msg": "hello"		
		,			0

Now, we can see the telemetry data sent from XIAO ESP32C3, as shown in the image below.

•••	Connections New Collection	XIAO - DHT20 🛛 🕖		७ ∠
<b>S</b>	• XIAO - DHT20@brok	+ New Subscription	Plaintext	All Received Published
		XIAO_ESP32_Tel QoS 0	Topic: XIAO_ESP32_Telemetry/Humiditydatarea d QoS: 0	
ዊ			44.17	
			2022-12-30 14:04:33	
+			Topic: XIAO_ESP32_Telemetry/Temperaturedata read QoS: 0	
~			20.10	
~			2022-12-30 14:04:59	
5				
o			Pavload: JSON V OoS: 0 V O Betain	
			Topic	~
۲			( "msg": "hello"	$\Theta \Theta \Theta$
			,	<

#### How often should telemetry be sent?

One question that needs careful consideration with telemetry is: how often should you measure and send data? The answer is — it depends on the needs of the device being monitored and the task at hand. If you measure frequently, you can indeed respond to changes in the measurements more quickly, but this would cause your device to consume more power, more bandwidth, generate more data, and require more cloud resources to handle. You need to strike a balance between measuring often enough but not too often.

For a thermostat, measuring every few minutes might be enough because the temperature isn't likely to change frequently. If you only measure once a day, then you might be heating your house for nighttime temperatures on a sunny day, and if you measure every second, you'd have thousands of unnecessary repeated temperature measurements which will eat up users' internet speed and bandwidth (which is a problem for people with limited bandwidth plans), and also consume more power, which is a problem for devices like remote sensors that rely on battery power, and further increase the cost of cloud computing resources to process and store them.

If you're monitoring data around a machine in a factory that might cause catastrophic damage and millions in lost revenue if it fails, then measuring multiple times a second may be necessary. Wasting bandwidth is better than missing telemetry data that could signal the need to stop and repair before a machine fails.

In this situation, you could consider first using an edge device to handle the telemetry data to reduce dependence on the internet.

#### Losing connection

Internet connections can be unreliable, and it's common to lose signal. In this case, what should an IoT device do? Should it lose data, or should it store data until the connection is restored? Again, the answer is — it depends on the device being monitored.

For a thermostat, data is likely lost once a new temperature measurement has been made. If the current temperature is 19°C, the heating system doesn't care that the temperature 20 minutes ago was 20.5°C; it's the current temperature that dictates whether the heat should be turned on or off.

For some machines, you may want to retain this data, especially if it's being used to look for trends. Some machine learning models can identify anomalies in data streams by looking at a defined time period (e.g., the last hour). This is often used for predictive maintenance, looking

for signs that something might be about to fail so you can repair or replace it before disaster strikes. You may want every point of telemetry from a machine sent so it can be used for anomaly detection, so once an IoT device can reconnect, it will send all the telemetry data generated during the internet outage.

IoT device designers should also consider whether an IoT device can operate during an internet outage or if it loses signal due to location. If a smart thermostat is unable to send telemetry data to the cloud due to an internet outage, it should be able to make some limited decisions to control heating.

This Ferrari became a brick when someone tried to update it in an underground car park... but there was no cell signal there.



For MQTT handling connection interruptions, if necessary, the device and server code will need to be responsible for ensuring message delivery, for example, requiring all sent messages to be replied to by an additional message on the reply topic, and if not, to manually queue them for later resending.

#### 3.5.6 Commands

Commands are messages sent by the cloud to a device instructing it to do something. Most often, this involves providing some output via an actuator, but it could be an instruction to the device itself, such as to reboot, or to collect additional telemetry data and send it as a response to the command.

A thermostat could receive a command from the cloud to turn on the heat. Based on the telemetry data from all sensors, if the cloud service has decided that the heat should be turned on, then it sends the appropriate command.



# 3.5.7 Task 3: Send Commands to XIAO via MQTT Broker

Having mastered telemetry, the next step is to send commands to IoT devices via an MQTT broker. In this task, we will try to use a computer with MQTT broker, often called a host computer, to send specific characters and let the Wi-Fi connected XIAO ESP32C3 control a buzzer attached to an expansion board to emit a warning sound.

In the Arduino IDE, load the following program to test sending specific characters (first character is '0') from the MQTT broker to activate the buzzer. We use the MQTT broker: **broker**. **hivemq.com** in this example.

```
// IDE:
 Arduino 2.0.0
11
// Platform:
// esp32 2.0.5 - https://github.com/espressif/arduino-esp32
// Board:
 XIAO ESP32C3
11
// Libraries:
// MQTT 2.5.0 - https://github.com/knolleary/pubsubclient
 ArduinoJson 6.19.4 - https://github.com/bblanchon/ArduinoJson
11
// https://github.com/Seeed_Studio/Seeed_Arduino_MultiGas
// Includes
#include <WiFi.h>
#include <PubSubClient.h>
```

```
const char* ssid = "ssid";
const char* password = "pass";
const char* mqtt_server = "broker.
hivemq.com";
WiFiClient espClient;
PubSubClient client(espClient);
long lastMsg = 0;
char msg[50];
int value = 0;
int speakerPin = A3;
void setup_wifi() {
 delay(10);
 // We start by connecting to a WiFi
network
 Serial.println();
 Serial.print("Connecting to ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL CONNECT-
ED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println("");
 Serial.println("WiFi connected");
 Serial.println("IP address: ");
 Serial.println(WiFi.localIP());
}
void callback(char* topic, byte* pay-
load, unsigned int length) {
 Serial.print("Message arrived [");
 Serial.print(topic);
 Serial.print("] ");
 for (int i=0;i<length;i++) {</pre>
 Serial.print((char)payload[i]);
 }
 if((char)payload[0] == '0') {
 Serial.print(" RUN");
 digitalWrite(speakerPin, HIGH);
 delay(2000);
 digitalWrite(speakerPin, LOW);
```

```
delay(100);
 }
 Serial.println();
}
void setup() {
 Serial.begin(115200);
 pinMode(speakerPin, OUTPUT);
 setup wifi();
 client.setServer(mqtt_server, 1883);
 client.subscribe("XIA0 ESP32/Re-
cieve");
 client.setCallback(callback);
}
void reconnect() {
 // Loop until we're reconnected
 while (!client.connected()) {
 Serial.print("Attempting MQTT con-
nection...");
 // Attempt to connect
 if (client.connect("XIA0 ESP32")) {
 Serial.println("connected");
 // Subscribe
 } else {
 Serial.print("failed, rc=");
 Serial.print(client.state());
 Serial.println(" try again in 5
seconds");
 // Wait 5 seconds before retry-
ing
 delay(5000);
 }
 }
}
void loop() {
 if (!client.connected()) {
 reconnect();
 client.subscribe("XIA0_ESP32/Re-
cieve");
 }
 client.loop();
}
```

Get this program from Github <u>https://github.</u> com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L15\_MQTTCommand\_ XIAO\_en Then modify the **ssid** in the code to your Wi-Fi network name, and modify the **pass** in the code to the Wi-Fi password corresponding to your Wi-Fi network name.

The logic of the program execution is explained as follows:

```
client.setServer(mqtt_server, 1883);
client.subscribe("XIA0_ESP32/Recieve");
client.setCallback(callback);
```

During the setup stage, the connection between XIAO and the MQTT server is initialized, and the topic subscription settings and callback functions are set. Here we subscribe to the topic XIAO\_ESP32/Recieve as an example. When we send a message to this topic from the host computer, the corresponding callback function callback will be executed:

```
void callback(char* topic, byte* payload, unsigned int length) {
 Serial.print("Message arrived [");
 Serial.print(topic);
 Serial.print("] ");
 for (int i=0;i<length;i++) {
 Serial.print((char)payload[i]);
 }
 if((char)payload[0]=='0'){
 Serial.print(" RUN");
 digitalWrite(speakerPin, HIGH);
 delay(2000);
 digitalWrite(speakerPin, LOW);
 delay(100);
 }
 Serial.println();
}</pre>
```

Here it will first print out the received message, then extract the character at position 0. When the character at position 0, which is the first character, is 0, it satisfies the condition for the if statement to perform an action. Here we connect the XIAO ESP32C3 and the expansion board together. When the condition is met, the buzzer on the expansion board will change its level briefly and beep for 2 seconds, while sending the prompt message RUN to the serial port.

In the process of development and testing by readers, you can also try to integrate the receive

and send functions of MQTT, and send messages to specific topics in the callback function, so that the sender can ensure that XIAO has received the message.

On the host computer, we use <u>MQTT X</u> to test. Open MQTT X, the interface is as shown in the following figure.



Click the **+ New Connection** button to enter the connection creation window, as shown in the following figure. Fill in the Name box with XIA0-MQTT-Recieve as the connection name. Host is the **broker.hivemq.com** we set in the program, and nothing else needs to be set. Click **Connect** at the top right corner. The interface after successful connection is as shown in the following figure.

	Connections New Collection	XIAO-MQTT-Recieve 😣 👩	७ ∠ ⊕ …
<b>S</b>	• XIAO-MQTT-Recieve	+ New Subscription G Plaintext ~	All Received Published
ዋ			
+			
<>>			
ß			
Ū		Payload: Plaintext V QoS: 0 V Retain XIAO. ESP32/Recieve	~
۲			${\bf e} \ominus {\bf 9}$
			3

Now we can publish messages to the specified topic, which is the topic XIA0\_ESP32/Recieve we subscribed to on XIAO. Then we enter 00 in the input box of XIA0\_ESP32/Recieve at the lower right corner of the interface, and then click the send button

	Connections New Collection	XIAO-MQTT-Recieve 📎 🔕	)	७ ∠ ∓ …
8	• XIAO-MQTT-Recieve	+ New Subscription	Plaintext ~	All Received Published
				Topic: XIAO_ESP32/Recieve QoS: 0 80
B				Topic: XIAO ESP32/Recieve QoS: 0
				86
+				2023-01-17 10:29:23
				Topic: XIAO_ESP32/Recieve QoS: 0
				2023-01-17 10:30:04
56				
0			Payload: Plaintext V QoS: 0 V O Retain XIAO_ESP32/Recieve	~
0			00	$\odot \odot$
				0

At this time, in the serial monitor on the PC side, you can see the prompt message received from XIAO, as shown in the following figure, and prompt **RUN**, the buzzer will sound for 2 seconds, indicating that the message has been received.



Now, we have successfully driven the buzzer on the expansion board connected to the Wi-Fi connected XIAO ESP32C3 through the instruction sent by the PC side.

The action of the buzzer can be replaced with the control of any peripheral to achieve the desired function.

#### Lost connection

If a cloud service needs to send a command to an offline IoT device, what should it do? Again, the answer depends on the situation. If the latest command overwrites the previous one, the previous command may be ignored. If the cloud service sends a command to turn on the heating, and then sends another command to turn off the heating, then the turn-on command can be ignored and does not need to be resent.

If the commands need to be processed in order, such as first moving the robot arm up and then closing the gripper, then they need to be sent in order once the connection is restored.

How can device or server code ensure that commands are always sent and processed in order through MQTT if needed?

#### Using XIAO's Bluetooth function

XIAO nRF52840, XIAO nRF52840 Sense, XIAO ESP32C3 all support Bluetooth function, you can refer to the related Wiki documents to learn how to use the Bluetooth function.

- Bluetooth Usage on Seeed Studio XIAO ESP32C3
- Bluetooth Usage (Seeed nRF52 Boards Library)
- Bluetooth Usage (Seeed nrf52 mbed-enabled Boards Library)

# Chapter 4: Project Practice Advanced -TinyML Applications

Among the XIAO series products, the Seeed Studio XIAO nRF52840 Sense has Bluetooth 5.0 wireless connectivity, low power consumption, and onboard 6-axis IMU and PDM microphone sensors. Besides, the XIAO ESP32S3 Sense further integrates PSRAM, a camera, a digital microphone, and SD card support.

Those characteristics make those devices powerful tools for TinyML (Tiny Machine Learning) projects.

TinyML solves problems in a completely different way from traditional programming methods. This chapter will introduce you to this cutting-edge field by walking through the entire TinyML workflow, from data collection, pre-processing, model definition, training, testing, and deployment to allow actual inference on the physical world.

# 4.1 Understanding TinyML and Edge Impulse Studio

This section will explain embedded machine learning, the differences between TinyML and other artificial intelligence, and some essential applications. This section will help you understand what TinyML is and why we need it. Edge Impulse Studio is one of the tools that allows developers to create next-generation intelligent device solutions through embedded machine learning. This section will introduce you to this tool and help you understand the basic steps to build an embedded machine-learning model.

#### 4.1.1 Common Terms

In addition to TinyML, we often hear conceptually similar terms such as edge computing, edge AI, embedded machine learning, etc. So, before learning TinyML, you need to understand these terms and their meanings.

#### **Embedded Systems**

An embedded system is a computer used only to solve a few particular problems and is challenging to change. The term "embedded" means that it is built into the system. It is a permanent part of the more extensive system. It usually doesn't look like a computer; in most cases, it doesn't have a keyboard, monitor, or mouse. But like any computer, it has a processor, software, input, and output.

Embedded systems are computers controlling various physical and electronic devices, and now they are almost everywhere. From the Bluetooth headphones you use, home audio-visual equipment, game consoles, air conditioners, sweeping robots, rice cookers, and washing machines to the control units of electric vehicles to communication equipment, factory equipment, medical equipment, office places, and even military equipment, almost any electrically driven device has the presence of embedded systems. Embedded software is the software running on them, and the following figures show some scenes where you can see embedded systems.



Embedded systems can be large or small, as small as the microcontroller controlling the digital watch and as large as the embedded computer in the autonomous car. Unlike general-purpose computers such as laptops or smartphones, embedded systems usually perform a specific specialized task.

#### Look around you, what devices might have embedded systems in them?

The size and complexity of embedded systems vary, but they all contain three basic components:

- **Hardware:** These systems use microprocessors and microcontrollers as their hardware. Microprocessors are similar to microcontrollers because they are both related to CPUs (central processing units), and CPUs are combined with other essential computer parts (such as storage chips and digital signal processors (DSPs)). Microcontrollers integrate all these parts into a single chip.
- **Firmware and Software:** The complexity of the system software differs from industrial-grade microcontrollers and embedded IoT systems, on the other hand, they usually run relatively basic software, using very little memory.
- **Real-Time Operating System (RTOS):** These systems, especially the more minor, often do not include these operation systems. By supervising software during program execution and establishing standards, RTOS determines how the system operates.

Embedded systems are often also constrained by their deployment environment. For example, many embedded systems need to run on battery power. Hence, their design needs to consider energy efficiency metrics - perhaps memory is limited, or the clock speed is extremely slow.

The challenge for engineers programming for embedded systems is often implementing functional requirements within these limited hardware and environmental resource constraints. You must consider hardware resource constraints when learning to build your TinyML project model for XIAO later.

#### Edge Computing and Internet of Things (IoT)

The concept of "Edge" is relative to the "Center." In the early days, computers like the ENIAC (Electronic Numerical Integrator and Computer), built in 1945, were massive, weighing nearly 30 tons and occupying 170 square meters.



Staff programming the ENIAC

At this stage, computational tasks were centralized on the core machine. These large computers evolved into "minicomputers," typically consisting of a central host and multiple terminals connected to the host. Multiple users could issue computational instructions through the terminals, but most of the computation still occurred on the central host. As time passed, the terminals became more complex and took over more and more functions of the central computer.

It wasn't until the advent of personal computers that computation truly expanded to the "edge." The rapid development of personal computers also led to the decline of those massive machines, and the scale of human computation quickly tilted towards the "edge."

The emergence and development of the Internet led to a large concentration of servers to provide a variety of data storage and computational services, search engines, streaming video, online games, social networks, etc. The highly centralized cloud computing era had arrived, and many internet service providers owned massive data center rooms.



The processor manual cover for the minicomputer pdp11/70, showing the host and connected terminals.



The 70s Wang computer, once a world leader in market share. (Personal computer Wang 2200 PCS II. It is located in the Belgrade Museum of Technology.)



Google's data center located on the outskirts of Pryor, Oklahoma, USA

In theory, all our computing services can be completed in the cloud. But these cloud-based services are useless in many areas without internet connections or when the internet goes down.

The computers we use for work and entertainment are just some devices connected to these cloud services. As of 2021, there were as many as 12.2 billion connected devices worldwide, and we call this network of devices **IOT (Internet of Things)**. It includes everything you can and can't think of, such as mobile phones, smart speakers, connected security cameras, cars, containers, pet trackers, industrial sensors, etc.

These devices are embedded systems containing microprocessors running software written by embedded software engineers. We can also call them edge devices because they are located

at the edge of the network. Computation performed on edge devices is known as **Edge Computing**. The following illustration expresses the relationship between the cloud and edge devices.

Devices at the network edge can communicate with the cloud, edge infrastructure, and each other. Edge applications typically span multiple locations on this map. For example, data may be sent from an IoT device equipped with sensors to a local edge server for processing.



## **Artificial Intelligence (AI)**

Artificial Intelligence (AI) is a vast concept and is difficult to define. In a vague sense, it's about making things possess human-like intelligence and thinking abilities. But even the definition of intelligence itself is disputed, and this is a cutting-edge field with many unknowns, which readers are welcome to explore on their own. For the convenience of understanding the following concepts, this book provides a relatively narrow definition of AI: an artificial system capable of making wise decisions based on specific inputs.

#### **Machine Learning (ML)**

Machine Learning (ML) primarily aims to design and analyze algorithms that allow computers to "learn" automatically. ML algorithms are a class of algorithms that automatically analyze and learn patterns from data and use these patterns to predict unknown data.

Take a typical example of machine learning—continuous motion recognition. In Section 2.4, we learned about the triaxial accelerometer. The image below shows a <u>Wio Terminal</u> with an embedded triaxial accelerometer and screen. We can use it to record accelerometer data for several different movements: waving (wave), flipping (flip), and idling (idle).

Looking at the data generated from these different movements, you can find a method for the



machine to recognize these motion patterns. The traditional way involves manually analyzing and checking the data, identifying specific logical rules for different movements through mathematical analysis, and then writing a recognition program to perform the desired action based on these rules. Sounds complicated, doesn't it?

Fortunately, we now have machine learning methods. Training and testing these data will yield an algorithm, and the device only needs to run this algorithm to automatically complete our desired "inference" process and deliver results. From the current state of machine learning development, this method is exceptionally proficient in handling complex data scenarios. We will learn more about this process in subsequent sections.

## Edge Al

As the term suggests, Edge AI combines edge devices and artificial intelligence. The development of Edge AI stems from the pursuit of lower system power consumption and higher efficiency. For example, popular smartwatches or fitness bands often have built-in accelerometers that generate hundreds of readings per second—a large volume of data—and continuous data reading is required to recognize movement states. If the recognition of movements is performed in the cloud, the smartwatch would need to consume a lot of energy to send data to the cloud, and there would usually be a delay in receiving the result. This makes the entire computational process uneconomical—high energy consumption and latency. This latency can also prevent us from effectively using data for real-time feedback.

Edge AI solves this problem by recognizing movements on the smartwatch or band itself. This allows for quick results without relying on the cloud. If necessary data needs to be uploaded to the cloud, there's no need to send a large amount of sensor data; instead, just the essential motion recognition results are sent, significantly reducing communication volume and consuming less electric power.

# **Embedded Machine Learning**

Embedded Machine Learning is the art and science of running machine learning models on embedded systems. When we talk about embedded machine learning, we typically refer to machine learning inference—the process of taking input and making a prediction (for example, guessing motion status based on accelerometer data). The training part is typically still performed on traditional computers.

Furthermore, embedded systems usually have limited memory. This challenges running many machine learning models, which often have high demands for read-only memory (storing the model) and RAM (handling intermediate results generated during inference). They often need more computing capability as well. Many machine learning models are quite compute-intensive, which can also pose problems.

## Tiny Machine Learning (TinyML)

TinyML involves implementing the inference process of machine learning on the most restricted embedded hardware, such as Micro Processor Units (MCUs), Digital Signal Processors (DSPs), and Field Programmable Gate Arrays (FPGAs).

The image below helps to understand the relationship between these terms better.



#### Advantages and Operation of Edge AI

For many years, the Internet of Things (IoT) has been referred to as "<u>machine-to-machine</u>" (M2M). It involves connecting sensors and various computing devices for process automation control and has been widely adopted in industrial machinery and processes.

Machine learning offers the ability to make further progress in automation by introducing

models that can make predictions or decisions without human intervention. Due to the complexity of many machine learning algorithms, the traditional integration of IoT and ML involves sending raw sensor data to a central server, which performs the necessary inference computations to generate predictions.



This configuration might be acceptable for low volumes of raw data and complex models. However, several potential problems have emerged:

- Transmitting extensive sensor data (like images) can consume a lot of network bandwidth.
- Data transmission also requires power.
- Sensors must continuously connect to the server to provide near real-time machine learning computation.

Given these challenges and the rapid development of machine learning, Edge AI has begun to emerge. Jeff Bier, founder of Edge AI and Vision Alliance, outlined five factors that push artificial intelligence to the edge in his article <u>What's Driving AI and Vision to the Edge</u> —**BLERP**, which stands for **Bandwidth**, **Latency**, **Economics**, **Reliability**, and **Privacy**.

- **Bandwidth:** If you have a commercial greenhouse, workshop, or mall with hundreds of cameras, it's impossible to send this information to the cloud for processing—the data would choke any type of internet connection you have. You simply need to process it locally.
- Latency: The latency here refers to the time between the system receiving sensor input and making a response. Consider autonomous vehicles: if a pedestrian suddenly appears at a crosswalk, the car's computer might only have a few hundred milliseconds to decide. There's not enough time to send the image to the cloud and await a response.
- **Economics:** Cloud computing and communication are getting better and cheaper, but they still cost money—possibly a lot of money, especially regarding video data. Edge computing reduces the amount of data that must be sent to the cloud and the computation workload once it arrives, significantly reducing costs.
- **Reliability:** Think of a home security system with facial recognition—even if there's an internet outage, you still want it to allow your family members to enter. Local processing makes this possible and gives the system more robust fault tolerance.
- **Privacy:** The rapid development of edge audio and video sensors has caused severe privacy issues, and sending this information to the cloud dramatically increases these concerns. The more information that can be processed locally, the less potential for abuse—what happens on the edge stays on the edge.

In most cases, training a machine learning model involves a three-step process of **Model**  $\rightarrow$  **Training**  $\rightarrow$  **Inference**, where obtaining the model requires more intensive computation than executing inference.

- Model: A mathematical formula trying to generalize information from a given dataset.
- **Training:** The process of automatically updating the parameters from data within a model. This model "learns" to make conclusions and generalize about the data.
- **Inference:** Providing new, unseen data to a trained model to make predictions, decisions, or classifications.

Thus, under normal circumstances, we would rely on powerful server clusters to train new models, constructing datasets from raw data collected on-site (images, sensor data, etc.) and using this dataset to train our machine learning models.

#### - Attention -

In some cases, we can train on the device side. However, this is generally unfeasible due to the memory and processing limitations of such edge devices.

Once we have a trained model, which is just a mathematical model (in the form of a software library), we can deploy it to our intelligent sensors or other edge devices. We can use this model to write firmware or software to collect new raw sensor readings, perform inferences, and take actions based on these inference results, as shown in the figure below. These actions could be self-driving cars, moving robotic arms, or sending



notifications to users about engine failures. Since inference is performed locally on the edge device, the device does not need to maintain a network connection (the optional connection is shown as a dotted line in the chart).

# 4.1.3 Applications of Edge AI

Running machine learning models on edge devices without staying connected to a more

powerful computer opens up possibilities for various automated tools and more intelligent IoT systems. Here are a few examples of edge AI enabling innovation in multiple industries.

#### **Environmental Protection**

- Smart grid monitoring to detect faults in power lines early
- Wildlife tracking and behavior research
- $\cdot\;$  Forest fire detection and early warning

#### Agriculture

• Precision weeding, fertilization, pesticide application, or irrigation



Benjamin Cabé used TinyML technology to create an artificial nose thatdistinguishes between various distinct smells.

- Automatic recognition of irrigation needs
- · Automatic recognition of crop status and disease/insect infestation conditions

#### **Smart Buildings**

- Monitoring of intrusions and recognition of abnormal states
- Air conditioning systems that adapt based on the number of people in a room

#### **Health and Sports**

- Wearable devices that track sleep and exercise conditions
- Portable medical devices
- Gesture recognition

#### **Human-Machine Interaction**

- Voice activation word detection
- Gesture and device motion recognition for auxiliary control

#### Industry

- · Automatic safety helmet detection
- Machine, equipment, and facility condition monitoring
- Production line defect detection
- · Position and motion state detection

The computational power typically required to perform machine learning inference at the edge is often more significant than simply polling sensors and transmitting raw data. However, locally, achieving such computations requires less power than sending raw data to a remote server.

The following table provides some suggestions on the type of hardware needed to perform machine learning inference at the edge, depending on the required application.

[Source: https://docs.edgeimpulse.com/docs/concepts/what-is-edge-machine-learning]

XIAO for this kind of task								
	Low-End MCU	High-End MCU	<b>NPU</b> (Neural Network Processor)	MPU (Microprocessor)	<b>GPU</b> (Graphics Processor)			
Task	Sensor Fusion Classification	Audio Classification	Image Classification	Complex Images or Sound and simple Videos	Video Classification			
Memory	18KB	50KB	256KB	1MB+	1GB+			
Sensors								
Audio				<				
Images								
Videos								
XIAO	nRF52840 Sense	nRF52840 & ESP32S3 Sense	ESP32S3 Sense	ESP32S3 Sense	—			

Embedded hardware is also rapidly evolving, and it's expected that the contents of this table will change soon.

## 4.1.4 Introduction to Edge Impulse Studio

<u>Edge Impulse</u> was founded by Zach Shelby and Jan Jongboom in 2019. It is the leading edge device machine learning development platform. This platform allows developers to create and optimize solutions with real-world data,

making the process of building, deploying, and scaling embedded ML applications more accessible and faster than ever before.

# **EDGE IMPULSE**

You can visit <u>Edge Impulse's official website</u> for more information about this tool and check the official documentation for a basic explanation.

In the following sections, we will learn to achieve continuous motion recognition with the on-board 6-axis accelerometer of the <u>XIAO nRF52840</u> Sense shown below and voice keyword wake-up functionality using the on-board PDM microphone.

Computer Vision applications such as Image Classification and Object Detection will also be implemented using the camera of the XIAO ESP32S3 Sense shown below.





# 4.2 Anomaly Detection & Motion Classification



#### Software apps and online services



• <u>Arduino IDE</u>

# 4.2.1 Things used in this project

#### Hardware components

Seeed Studio XIAO nRF52840 Sense × 1





• Edge Impulse Studio

## 4.2.2 Introduction

As you learned in the previous section, microcontrollers (MCUs) are very cheap electronic components, usually with just a few kilobytes of RAM, designed to use tiny amounts of energy. They can be found in almost any consumer, medical, automotive, and industrial device. Over 40 billion microcontrollers will be sold this year, and there are probably hundreds of billions in service nowadays. However, these devices get little attention because they're often only used to replace the functionality of older electro-mechanical systems in cars, washing machines, or remote controls. More recently, with the Internet of Things (IoT) era, a significant part of those MCUs is generating "quintillions" of data that, in its majority, is not used due to the high cost and complexity (bandwidth and latency) of data transmission.

On the other hand, in recent decades, we have seen a lot of development in Machine Learning models trained with vast amounts of data in very powerful and power-hungry mainframes. And what is happening today is that due to those developments, it is now possible to take noisy signals like images, audio, or accelerometers and extract meaning from them by using Machine Learning algorithms such as Neural Networks.

And what is more important is that we can run these algorithms on microcontrollers and sensors themselves using very little power, interpreting much more of those sensor data that we are currently ignoring. This is TinyML, a new technology that enables machine intelligence right next to the physical world.

TinyML can have many exciting applications for the benefit of society at large.

This section will explore TinyML, running on a robust and tiny device, the <u>Seed XIAO nRF52840</u> <u>Sense</u> (also called XIAO BLE Sense).

#### 4.2.3 XIAO nRF52840 Sense

#### **MainFeatures**

- Bluetooth 5.0 with onboard antenna
- CPU: Nordic nRF52840, ARM® Cortex®-M4 32-bit processor with FPU, 64 MHz
- + Ultra-Low Power: Standby power consumption is less than  $5\mu A$
- Battery charging chip: Supports lithium battery charge and discharge management

Type-C

- 2 MB flash
- 256 KB RAM
- PDM microphone
- 6-axis LSM6DS3TR-C IMU
- Ultra Small Size: 20 x 17.5mm, XIAO series classic form-factor for wearable devices
- Rich interfaces: 1xUART, 1xI2C, 1xSPI, 1xNFC, 1xSWD, 11xGPIO(PWM), 6xADC
- Single-sided components, surface mounting design



Charge LED

# Connecting the XIAO nRF52840 Sense with Arduino IDE

The simple way to test and use this device is using the <u>Arduino IDE</u>. Once you have the IDE installed on your machine, navigate to File > Preferences, and fill in "Additional Boards Manager URLs" with the URL below: https://files.seeedstudio.com/arduino/package\_seeeduino\_boards\_index.json

• • •	Preferences		
	Settings Network		
Sketchbook location:			
/Users/marcelo_rovai/Docum	nents/Arduino	Browse	
Editor language:	System Default	😌 (requires restart of Arduino)	
Editor font size:	17		
Interface scale:	✓ Automatic 100 0 % (requires restart of Arduino)		
Theme:	Default theme 🔅 (requires restart of Arduino)		
Show verbose output during:	compilation upload		
Compiler warnings:	None 😌		
🕑 Display line numbers	Enable Code Folding	g	
🗹 Verify code after upload	Use external editor		
Check for updates on star	tup 🔽 Save when verifying	g or uploading	
Use accessibility features			
Additional Boards Manager UR	Ls: https://files.seeedstudio.com/arduino/package_	seeeduino_boards_index.jso 🔲	
More preferences can be edite	d directly in the file		
/Users/marcelo_rovai/Library	/Arduino15/preferences.txt		
(edit only when Arduino is not	running)		
		OK Cancel	

Now, navigate to **Tools→Board→Board Manager** in the top menu, and type in the filter keyword **seeed nrf52** in the search box.

You will see two installation packages: Seeed nRF52 Boards and Seeed nRF52 mbed-enabled Boards, the differences between these two packages are as follows:

- Seeed nRF52 Boards: Friendly for Bluetooth and low-power compatibility, suitable for Bluetooth and low power applications.
- Seeed nRF52 mbed-enabled Boards: Friendly for TinyML support, suitable for making TinyML or Bluetooth-related projects, but not suitable for applications with high low-power requirements.

Because we will develop a TinyML project, we chose the latest version of the Seeed nRF52 mbedenabled Boards package. Install it and wait until you see a successful installation prompt in the output window.



Now, you can access this device from your Arduino IDE by selecting the development board and serial port, as shown in the figure below.

Auto Format mr24 [Arduino IDE 2.10 Archive Sketch Archive Sketch BOARDS MANAGER seeed nrf52 Type: All Upload SSL Root Cartificates Board: "Seeeduino XUAO" Port Seeed ARF52 Board 1.11 withstalid Boards Induide In this package: Seeed nRF52 mbed- enabled Boards by 2.1.1 withstalid Boards Included In this package: Seeed nRF52 mbed- enabled Boards by 2.1.1 withstalid Boards Included In this package: Seeed nRF52 mbed- enabled Boards by 2.1.1 withstalid Boards Included In this package: Seeed NAD BLE Sense - nRF52840 Seeed XIAO B	🔹 Arduino IDE File Edit	Sketch Tools Help	
seeed nff52       Type:       All         Type:       All       Upload SSL Root Certificates         Bard:       Seeed nRF52 Boardis       Bard:         Seeed nRF52       Bard:       Bard:         Bard:       Seeed nRF52       Bard:         More info       US Stack:       US Stack:         Programmer       Seeed nRF52 mbed- enabled Boards by       Seeed nRF52 mbed- enabled Boards by         2.9.1       REMOVE	BOARDS MAR	Auto Format XT Seeed Manage Libaries O:X I MAGER Serial Monitor O:XM Serial Plotter	in2a   Arduino IDE 2.1.0 √ · (Ο·· 
Seeed nRF52 B       Board: "Seeedulino XIAO"         Board: Seeed XIAO       Board: "Seeedulino XIAO"         Int installed       Board: "Seeedulino XIAO"         Board: Manager       0 XB         Adafruit SAMD Boards       Adafruit SAMD Boards         Adafruit SAMD Roards       Seeed XIAO RB522         XAO nRF522Boards       Seeed XIAO RB522         XAO nRF522Boards       Seeed XIAO BLE - nRF52B40         Seeed nRF52 mbed- eeabled Boards by       Seeed NRF52 mbed- eeadlet - nRF522B40         Seeed XIAO BLE - nRF522B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE - nRF52B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE - nRF52B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE - nRF52B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE - nRF52B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE - nRF52B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE Sense - nRF52B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE Sense - nRF52B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE Sense - nRF52B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE Sense - nRF52B40       Seeed XIAO BLE Sense - nRF52B40         Seeed XIAO BLE Sense - nRF52B40       Seeed XIAO BLE Sense - nRF52B40 <tr< td=""><td>seeed nrf5</td><td>WiFi101 / WiFiNINA Firmware Updater Upload SSL Root Certificates</td><td>tup code here, to run once:</td></tr<>	seeed nrf5	WiFi101 / WiFiNINA Firmware Updater Upload SSL Root Certificates	tup code here, to run once:
	Seeed nRI Seeed SMA Boards inclu Seeed SMA More info 1.1.1 • Seeed nRI Boards inclu XIAO nRF52 More info 1.1.1 • Seeed nRI Seeed XAO Seeed XAO More info 2.9.1 •	F52 Bo     Board: "Seeedulino XIAO"       Port     Port       Port     Port       Uded in Info     Debug: "Off"       SERCOMA: "USB Stack: "Arduino"     Programmer       Programmer     Programmer       Burn Bootloader     Programmer	Boards Manager       O X B         Adafuiti SAMD Boards       >         Arduino AVR Boards       >         esg32       >         Raspberry PI Pico/RP2040       >         Seeed RRF52 Boards       >         Seeed RRF52 Boards       >         Seeed RRF52 Boards       >         Seeed SAMD Boards       >         Seeed SAMD Boards       >
Your development board is now ready to run code on it. Let's start with Blink - lighting up the LED. Note that the board does not have a regular LED like most Arduino boards. Instead, you will find an RGB LED that can be activated with "reverse logic" (you should apply LOW to activate each of the three separate LEDs). Test your RGB LED with the following code:

```
void setup() {
 // initialize serial.
 Serial.begin(115200);
 while (!Serial);
 Serial.println("Serial Started");
 // Pins for the built-in RGB LEDs on the Arduino Nano 33 BLE Sense
 pinMode(LEDR, OUTPUT);
 pinMode(LEDG, OUTPUT);
 pinMode(LEDB, OUTPUT);
 // Note: The RGB LEDs are ON when the pin is LOW and off when HIGH.
 digitalWrite(LEDR, HIGH);
 digitalWrite(LEDG, HIGH);
 digitalWrite(LEDB, HIGH);
}
void loop() {
 digitalWrite(LEDR, LOW);
 Serial.println("LED RED ON");
 delay(1000);
 digitalWrite(LEDR, HIGH);
 Serial.println("LED RED OFF");
 delay(1000);
 digitalWrite(LEDG, LOW);
 Serial.println("LED GREEN ON");
 delay(1000);
 digitalWrite(LEDG, HIGH);
 Serial.println("LED GREEN OFF");
 delay(1000);
 digitalWrite(LEDB, LOW);
 Serial.println("LED BLUE ON");
 delay(1000);
 digitalWrite(LEDB, HIGH);
 Serial.println("LED BLUE OFF");
 delay(1000);
}
```

Get this code online <a href="https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/tree/main/Seeed\_Xiao\_Sense\_bilnk\_RGB">https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/tree/main/Seeed\_Xiao\_Sense\_bilnk\_RGB</a>

Here is the result:



#### **Testing the Microphone**

The XIAO nRF52840 Sense has a <u>PDM digital output MEMS microphone</u>. Run the below code for testing it:

```
#include <PDM.h>
// buffer to read samples into, each sample is 16-bits
short sampleBuffer[256];
// number of samples read
volatile int samplesRead;
void setup() {
 Serial.begin(9600);
 while (!Serial);
 // configure the data receive callback
 PDM.onReceive(onPDMdata);
 // optionally set the gain, defaults to 20
 // PDM.setGain(30):
 // initialize PDM with:
 // - one channel (mono mode)
 // - a 16 kHz sample rate
 if (!PDM.begin(1, 16000)) {
 Serial.println("Failed to start PDM!");
 while (1);
 }
}
void loop() {
 // wait for samples to be read
 if (samplesRead) {
 // print samples to the serial monitor or plotter
 for (int i = 0; i < samplesRead; i++) {</pre>
 Serial.println(sampleBuffer[i]);
 // check if the sound value is higher than 500
 if (sampleBuffer[i]>=500){
 digitalWrite(LEDR,LOW);
 digitalWrite(LEDG,HIGH);
 digitalWrite(LEDB,HIGH);
 }
 // check if the sound value is higher than 250 and lower than 500
 if (sampleBuffer[i]>=250 && sampleBuffer[i] < 500){</pre>
 digitalWrite(LEDB,LOW);
 digitalWrite(LEDR, HIGH);
 digitalWrite(LEDG,HIGH);
 }
 //check if the sound value is higher than 0 and lower than 250
 if (sampleBuffer[i]>=0 && sampleBuffer[i] < 250){</pre>
 digitalWrite(LEDG,LOW);
 digitalWrite(LEDR, HIGH);
 digitalWrite(LEDB,HIGH);
 }
```

```
}
// clear the read count
samplesRead = 0;
}

void onPDMdata() {
 // query the number of bytes available
 int bytesAvailable = PDM.available();
 // read into the sample buffer
 PDM.read(sampleBuffer, bytesAvailable);
 // 16-bit, 2 bytes per sample
 samplesRead = bytesAvailable / 2;
}
```

The above code will continuously capture data to its buffer, displaying it in the Serial Monitor and Plotter:



Also, note that the RGB LED will be set up depending on the intensity of sound.

The Micrphone will not be used on this project in particular, but it is good to have it tested if it is your first time using the XIAO nRF52840 Sense.

#### **Testing the IMU**

Our tiny device also has integrated a 6-Axis IMU, the <u>LSM6DS3TR-C</u>, a system-in-package 3D digital accelerometer, and a 3D digital gyroscope. For testing, you should first install its library <u>'Seeed Arduino LSM6DS3'</u>.

Before programming the accelerometer with the Arduino IDE, you must add the necessary library for the sensor. Enter the library address <u>https://github.com/Seeed-Studio/Seeed\_Arduino\_LSM6DS3/</u> in the browser address bar, go to the GitHub page, click Code→Download ZIP to download the resource pack Seeed\_Arduino\_LSM6DS3-master.zip to the local area, as shown below.

Search or jump to	Arduno_ESMeDIS37 Pull requests Issues Codespaces M	farketplace Explore	≋ @ ☆ <b>≯ ⊡</b> ♀ +- •
Geeed-Studio / Seeed_Arduino_LS	MGDS3 Public	Wiki 🛈 Security 🗠 Insights	⊙Watch 11 • ¥ Fork 12 • ☆ Star 26
P master - P 1 branch	<b>⊙ 6</b> tags	Go to file Add file • 🛛 <> Code •	About
Iakshanthad Update version	n	Local Codespaces (New)	Grave sensor 6 Axis Accelerometer&Gyroscope using
examples	Fix Typo	L Clone 🔊	LSM6DS3
gitattributes	add .gitattributes	HTTPS SSH GitHub CLI	Readme      Readme      View license
gitignore	add .gitignore	https://github.com/Seced_Studio/Seced_Ard	☆ 26 stars
gitlab-ci.yml	Seeed:Arduino: fix travis.yml v	Use Oit or checkout with SVN using the web URL.	I1 watching
.travis.yml	Seeed:Arduino: fix travis.yml v	Open with GitHub Desktop	♀ 12 forks
LICENSE.md	Correct the word		
LSM6DS3.cpp	Fix include header (#5)	Download ZIP	Releases 5
LSM6DS3.h	rename SparkFunLSM6DS3 to	LSM6DS3 11 months ago	© v2.0.3 (Latest) on Feb 27
README.md	rename SparkFunLSM6DS3 to	LSM6DS3 11 months ago	+ 4 releases
keywords.txt	add keywords.txt	5 years ago	
library.properties	Update version	9 months ago	Packages
E README.md			No packages published

Add the resource pack Seeed\_Arduino\_LSM6DS3-master.zip downloaded in the previous step in the menu bar's Sketch→Include Library→Add .ZIP Library until you see a prompt that the library has been loaded successfully.

#### Run the test code based on Harvard University's tinymlx - Sensor Test

Now, run the following test code based on Harvard University's tinymlx - Sensor Test.

```
#include "LSM6DS3.h"
#include "Wire.h"
//Create an instance of class LSM6DS3
LSM6DS3 xIMU(I2C_MODE, 0x6A); //I2C device address 0x6A
char c;
int sign = 0;
void setup() {
 Serial.begin(115200);
 while (!Serial);
 // configure the IMU
 if (xIMU.begin() != 0) {
 Serial.println("Device error");
 } else {
 Serial.println("Device OK!");
 }
 Serial.println("Welcome to the IMU test for the built-in IMU on the XIAO BLE
Sense\n");
 Serial.println("Available commands:");
 Serial.println("a - display accelerometer readings in g's in x, y, and z direc-
tions");
 Serial.println("g - display gyroscope readings in deg/s in x, y, and z direc-
tions");
 Serial.println("t - display temperature readings in oC and oF");
}
```

```
void loop() {
 // Read incoming commands from serial monitor
 if (Serial.available()) {
 c = Serial.read();
 Serial.println(c);
 }
 if(c == 'a')sign=1;
 else if(c == 'g')sign=2;
 else if(c == 't')sign=3;
 float x, y, z;
 if (sign ==1) { // testing accelerometer
 //Accelerometer
 x = xIMU.readFloatAccelX();
 y = xIMU.readFloatAccelY();
 z = xIMU.readFloatAccelZ();
 Serial.print("\nAccelerometer:\n");
 Serial.print("Ax:");
 Serial.print(x);
 Serial.print(' ');
 Serial.print("Ay:");
 Serial.print(y);
 Serial.print(' ');
 Serial.print("Az:");
 Serial.println(z);
 }
 else if (sign ==2) { // testing gyroscope
 //Gyroscope
 Serial.print("\nGyroscope:\n");
 x = xIMU.readFloatGyroX();
 y = xIMU.readFloatGyroY();
 z = xIMU.readFloatGyroZ();
 Serial.print("wx:");
 Serial.print(x);
 Serial.print(' ');
 Serial.print("wy:");
 Serial.print(y);
 Serial.print(' ');
 Serial.print("wz:");
 Serial.println(z);
 }
 else if (sign ==3) { // testing thermometer
 //Thermometer
 Serial.print("\nThermometer:\n");
 Serial.print(" Degrees oC = ");
 Serial.println(xIMU.readTempC(), 0);
 Serial.print(" Degrees oF = ");
 Serial.println(xIMU.readTempF(), 0);
 delay(1000);
 }
}
```

Get this code online <a href="https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/xiao\_test\_IMU/xiao\_test\_IMU.ino">https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/xiao\_test\_IMU.ino</a>

Once you run the above sketch, open the Serial Monitor:



Choose one of the three options to test:

- a: Accelerometer (see the result on Plotter)
- g: Gyroscope (see the result on Plotter)
- t: Temperature (see the result on Serial Monitor)

The following images show the result:



• • •	/dev/cu.usbmodem1101
	Send
Thermometer:	
Degrees oC = $25$	
Degrees oF = 77	
Thermometer:	
Degrees oC = $25$	
Degrees $oF = 77$	
Thermometer:	
Degrees oC = $25$	
Degrees oF = $76$	
Thermometer:	
Degrees oC = $25$	
Degrees oF = $76$	
Autoscroll Show timestamp	Both NL & CR 😌 115200 baud 😌 Clear outpu

# 4.2.4 The TinyML Motion Classification Model

For our project, we will simulate mechanical stresses in transport. Our problem will be to classify four classes of movement:

- Maritime (pallets in boats)
- Terrestrial (palettes in a Truck or Train)
- Lift (Palettes being handled by Fork-Lift)
- Idle (Palettes in Storage houses)



So, to start, we should collect data. Then, accelerometers will provide the data on the palette (or container).



# Mechanical Stresses in Maritime Transport

From the above images, we can see that primarily horizontal movements should be associated with "Terrestrial class," Vertical movements to "Lift Class," no activity to "Idle class," and movent on all three axes to <u>Maritime class</u>.

# **Connecting a Device to the Edge Impulse Studio**

For data collection, we can have several options. In a real case, we can have our device, for example, connected directly to one container, and the data collected on a file (for example .CSV) and stored on an SD card (via SPI connection) or an offline repo in your computer. Data can also be sent remotely to a nearby repository, such as a mobile phone, using Bluetooth as done in this project: <u>Sensor DataLogger</u>. Once your dataset is collected and stored as a .CSV file, it can be uploaded to the Studio using the <u>CSV Wizard tool</u>.

In this video, you can learn alternative ways to send data to the Edge Impulse Studio.

In this project, we should first connect our device to the Edge Impulse Studio for data collection, which will also be used for data pre-processing, model training, testing, and deployment.

Follow the instructions <u>here</u> to install the <u>Node.js</u> and Edge Impulse CLI on your computer.

Once the XIAO nRF52840 Sense is not a fully supported development board by Edge Impulse, we should use the <u>CLI Data Forwarder</u> to capture data from the accelerometer and send it to the Studio, as shown in this diagram:

Your device should be connected to the computer serial and running a code to capture IMU (Accelerometer) data and "print them" on the serial. Further, the Edge Impulse Studio will "capture" them. Run the code below:





```
#define FREQUENCY HZ
 50
#define INTERVAL MS
 (1000 / (FREQUENCY_HZ + 1))
static unsigned long last_interval_ms = 0;
void setup() {
 Serial.begin(115200);
 while (!Serial);
 // configure the IMU
 if (xIMU.begin() != 0) {
 Serial.println("Device error");
 } else {
 Serial.println("Device OK!");
 }
 Serial.println("Data Forwarder - Built-in IMU (Accelerometer) on the XIAO BLE
Sense\n");
}
void loop() {
 float x, y, z;
 if (millis() > last_interval_ms + INTERVAL_MS) {
 last_interval_ms = millis();
 x = xIMU.readFloatAccelX();
 y = xIMU.readFloatAccelY();
 z = xIMU.readFloatAccelZ();
 Serial.print(x * CONVERT_G_T0_MS2);
 Serial.print('\t');
 Serial.print(y * CONVERT_G_T0_MS2);
 Serial.print('\t');
 Serial.println(z * CONVERT_G_T0_MS2);
 }
}
```

Get this code online <a href="https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO\_BLE\_Sense\_Accelerometer\_Data\_Forewarder/XIAO\_BLE\_Sense\_Accelerometer\_Data\_Forewarder.ino">https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO\_BLE\_Sense\_Accelerometer\_Data\_Forewarder.ino</a>

Go to the Edge Impulse page and create a project. Next, start the <u>CLI Data Forwarder</u> on your terminal, entering (if it is the first time) the following command:

#### \$ edge-impulse-data-forwarder --clean

Next, enter your El credentials, and choose your project, variable, and device names:



The Studio can read the sampled frequency as 51Hz instead of the 50Hz previously defined in the code. It is OK.

Go to the Devices section on your EI Project and verify if the device is connected (the dot should be green):

•	🔍 🔍 🧮 XIAO-TinyML-IM	U - Devices - L X +						
÷	⇒ C 🔒 studio.edgei	mpulse.com/studio/163840/devices						* 🛛 🕅 🗄
=	EDGE IMPULSE		MJRoBot(Marcelo Roval)	/ XIAO BLE Sense	<ul> <li>Motion Classification</li> </ul>	n		m
0	Dashboard	Your devices					+ Connect	a new device
	Devices	These are devices that are connected	ed to the Edge Impulse remote m	anagement API, or have	posted data to the ingestion	SDK.		
7.	Data sources	NAME	ID	τγρε	SENSORS	REM	LAST SEEN	
*	Impulse design	XIAO BLE Sease	BB:3A:90:8B:AC:3E:8B:83	DATA_FORWARDER	Sensor with 3 axes (accX	•	Dec 02 2022, 16:19:56	
	Create impulse					£5	1	
	<ul> <li>Syntiant IMU</li> </ul>	© 2022 EdgeImpulse Inc. All rights res	erved			-		
	<ul> <li>Classifier</li> </ul>							
0	EON Tuner							
×	Retrain model							
ň	Live classification							
8	Model testing							
P	Versioning							
0	Deployment							
GET	TTING STARTED							
13	Documentation							٢

# **Data Collection**

As discussed before, we should capture data from all four Transportation Classes:

- **lift** (up-down)
- terrestrial (left-right)
- maritime (zig-zag, etc.)
- idle



You can capture, for example, around 2 minutes (twelve samples of 10 seconds) for each of the four classes (a total of 8 minutes of data). Using the three dots menu after each one of the samples, select 2 of them, reserving them for the Test set. Alternatively, you can use the automatic Train/Test Split tool on the Danger Zone of Dashboard tab.

Below is one sample (10 seconds of raw data):

9268

EDGE IMPULSE	5m 20s		TRAIN / TEST SPUT 80% / 20% 1	Record new data	+© Connect using Web0
Dashboard	Collected data		TELO	Device (2) XIAO BLE Sease	
Data sources	SAMPLE NAME	LABEL	ADDED LENGTH	Label	Sample length (ms.)
Data acquisition	maritime.3j5f6gv1	maritime	Today, 15:07:04 10s E	idle	10000
Impulse design	maritime.3j5f615a	maritime	Today, 15:06:48 10s E		
Create impulse	maritime.3j5f4e8e	maritime	Today, 15:05:56 10s E	Sensor with 3 ares (accX, accY, accZ)	SOH2
EON Tuner	maritime.3j5f3tcp	maritime	Today, 15:05:39 10s I		
Retrain model	lift.3j5f2orc	Jift .	Today, 15:05:1 Rename		Start samplin
Live classification	lift.3j5f29br	litt	Edit label Today, 15:049		
Model testing	lift.3j5f1mof	in	Today, 15:04G Disable	RAW DATA Click on a sample to load	
Versioning	lift.3j5f16l5	10t	Today, 15:04; Crop sample		
Deployment	lift.3jSevfrc	10t	Split sample Today, 15:03:		
TING STARTED	lift.3jSeuvun	lite	Today, 15:02:1 Delete		
Documentation	lift.3j5eufoc	litt	Today, 15:02:41 10s i		
Forums	lift.3jSetqo4	Int	Today, 15:02:19 10s I		
			< 1 <b>2</b> 3 >		

Once you have captured your dataset, you can explore it in more detail using the <u>Data</u> <u>Explorer</u>, a visual tool to find outliers or mislabeled data (helping to correct them). The data explorer first tries to extract meaningful features from your data (by applying signal processing and neural network embeddings) and then uses a dimensionality reduction algorithm such as <u>PCA</u> or <u>t-SNE</u> to map these features to a 2D space. This gives you a onelook overview of your complete dataset.

# **Data Pre-Processing**

Data pre-processing is extracting features from the dataset captured with the accelerometer, which involves processing and analyzing the raw data. Accelerometers measure the acceleration of an object along one or more axes (typically three, denoted as X, Y, and Z). These measurements can be used to understand various aspects of the object's motion, such as movement patterns and vibrations.

Raw accelerometer data can be noisy and contain errors or irrelevant information. Preprocessing steps, such as filtering and normalization, can clean and standardize the data, making it more suitable for feature extraction. In our case, we should divide the data into smaller segments or **windows**. This can help focus on specific events or activities within the dataset, making feature extraction more manageable and meaningful. The **window size** and overlap (**window increase**) choice depend on the application and the frequency of the events of interest. As a thumb rule, we should try to capture a couple of "cycles of data".

With a sampling rate (SR) of 50Hz and a window size of 2 seconds, we will get 100 samples per axis, or 300 in total (3 axis x 2 seconds x 50 samples). We will slide this window every 200ms, creating a larger dataset where each instance has 300 raw features.



Once the data is preprocessed and segmented, you can extract features that describe the motion's characteristics. Some typical features extracted from accelerometer data include: - **Time-domain** features describe the data's statistical properties within each segment, such as mean, median, standard deviation, skewness, kurtosis, and zero-crossing rate. - **Frequency-domain** features are obtained by transforming the data into the frequency domain using techniques like the Fast Fourier Transform (FFT). Some typical frequency-domain features include the power spectrum, spectral energy, dominant frequencies (amplitude and frequency), and spectral entropy. - **Time-frequency** domain features combine the time and frequency domain information, such as the Short-Time Fourier Transform (STFT) or the Discrete Wavelet Transform (DWT). They can provide a more detailed understanding of how the signal's frequency content changes over time.

In many cases, the number of extracted features can be large, which may lead to overfitting or increased computational complexity. Feature selection techniques, such as mutual information, correlation-based methods, or principal component analysis (PCA), can help identify the most relevant features for a given application and reduce the dimensionality of the dataset. The Studio can help with such feature importance calculations.

#### **El Studio Spectral Features**

Data preprocessing is a challenging area for embedded machine learning. Still, Edge Impulse helps overcome this with its digital signal processing (DSP) preprocessing step and, more specifically, the <u>Spectral Features Block</u>.

On the Studio, the collected raw dataset will be the input of a Spectral Analysis block, which is excellent for analyzing repetitive motion, such as data from accelerometers. This block will perform a DSP (Digital Signal Processing), extracting features such as <u>EFT</u> or <u>Wavelets</u>.

For our project, once the time signal is continuous, we should use FFT with, for example, a length of [32].

The per axis/channel Time Domain Statistical features are:

- <u>RMS</u>: 1 feature
- <u>Skewness</u>: 1 feature
- <u>Kurtosis</u>: 1 feature

The per axis/channel Frequency Domain Spectral features are:

- <u>Spectral Power</u>: 16 features (FFT Length/2)
- Skewness: 1 feature
- Kurtosis: 1 feature

So, for an FFT length of 32 points, the resulting output of the Spectral Analysis Block will be 21 features per axis (a total of 63 features).

You can learn more about how each feature is calculated by downloading the notebook Edge Impulse - Spectral Features Block Analysis TinyML under the hood: Spectral Analysis or <u>opening it directly on Google CoLab</u>.

Those 63 features will be the Input Tensor of a Neural Network Classifier.

# **Model Design**

Our classifier will be a Dense Neural Network (DNN) that will have 63 neurons on its input layer, two hidden layers with 20 and 10 neurons, and an output layer with four neurons (one per each class), as shown here:



# **Impulse Design**

A complete Impulse comprises three primary building blocks: the input block - which obtains the raw data, the processing block - which extracts features, and the learning block - which classifies the data. The following image shows the interface when the three building blocks still need to be added, and our machine-learning pipeline will be implemented by adding these three blocks.

Dashboard	An impulse takes raw data, uses signal processing	g to extract features, and then uses a learning block to classi	fy new data.		
Devices	Contract of the local division of the local				1.11
🔀 Data sources					
Data acquisition					
👫 Impulse design	5	5	<u>A</u>	Output features	<ul> <li>✓</li> </ul>
Create impulse	Add an input block	Add a processing block	Add a learning block	00	
Spectral features					
Classifier					Save Impulse
Anomaly detection					

Impulse obtains raw data through the input block, uses the processing block to extract features, and then uses the learning block to classify new data. In our continuous action recognition, the added blocks include:

#### 1. Adding the input block: Time Series Data

Click the **"Add an Input Block"** button and select **Time Series Data** in the pop-up window as shown below to match the sensor data type we collected.



As shown in the figure below, set the **Window Size** to 2000 ms (2 seconds), the **Window Increase** to 80 milliseconds, and the **Frequency** to 51 Hz based on the calculations we made in the data preprocessing section on the Time Series Data block that appears.



#### 2. Adding the processing block: Spectral Analysis

Click the **"Add a Processing Block"** button and select **Spectral Analysis** in the pop-up window as shown below to match our motion analysis task type.

Add a processing block			×
Did you know? You can bring your own I	OSP code.		
DESCRIPTION	AUTHOR	RECOMMENDED	
Spectral Analysis Great for analyzing repetitive motion, such as data from accelerometers. Extracts the frequency and power characteristics of a signal over time.	Edge Impulse	*	Add
IMU (Syntiant) Syntiant only. Great for analyzing repetitive motion, such as data from accelerometers. Extracts the frequency and power characteristics of a signal over time.	Syntiant	•	Add
Flatten Flatten an axis into a single value, useful for slow-moving averages like temperature data, in combination with other blocks.	Edge Impulse		Add
Spectrogram Extracts a spectrogram from audio or sensor data, great for non-voice audio or data with continuous frequencies.	Edge Impulse		Add
Raw Data Use data without pre-processing. Useful if you want to use deep learning to learn features.	Edge Impulse		Add
Some processing blocks have been hidden based on the data in your	project. Show all	blocks anyway	
Add custom block			Cancel

The effect after adding the processing block is shown in the figure below.

Time series data	Spe Spe	ctral Analysis	0	<b>a</b>	Output features	(
	Nam	e		Add a learning block	00	
	Spe	ctral features				
Window size	(D) Inpu	t axes (3)				Save In
	2000 ms. 🕑 4	HCCK.				
	0 🗹	ICCY				
•	80 ms.	eccZ.				
Frequency (Hz)	Ø					
51 C						
	•					
	•					
		Add a processing bi	lock			

#### 3. Adding the learning block: Classification

Click the "Add Learning Block" button and select **Classification** in the pop-up window as shown below to match our motion analysis task type.

Add a learning block			×
Did you know? You can bring your own model in PyTor	rch, Keras or sci	kit-learn.	
DESCRIPTION	AUTHOR	RECOMMENDED	
<b>Classification</b> Learns patterns from data, and can apply these to new data. Great for categorizing movement or recognizing audio.	Edge Impulse	•	Add
Anomaly Detection (K-means) Find outliers in new data. Good for recognizing unknown states, and to complement classifiers. Works best with low dimensionality features like the output of the spectral features block.	Edge Impulse	•	Add
<b>Regression</b> Learns patterns from data, and can apply these to new data. Great for predicting numeric continuous values.	Edge Impulse		Add
Some learning blocks have been hidden based on the data in your p	project. Show all b	ocks anyway	
			Cancel

The interface of Impulse design after addition is shown in the figure below, and now the machine learning pipeline has been built.



In addition, we can also use a second model - K-means, which can be used for anomaly detection. If we imagine that we can treat our known classes as clusters, then any sample that does not fit into it might be an anomaly (for example, a container falling into the sea when the ship is at sea).



For this, we can use the same input tensor entering the NN classifier as the input to the K-means model:



Click the "Add Learning Block" button again and select **Anomaly Detection (K-means)** in the pop-up window below.

Add a learning block			×
Did you know? You can bring your own model in PyTor	ch, Keras or scil	kit-learn.	
DESCRIPTION	AUTHOR	RECOMMENDED	
<b>Classification</b> Learns patterns from data, and can apply these to new data. Great for categorizing movement or recognizing audio.	Edge Impulse	*	Add
Anomaly Detection (K-means) Find outliers in new data. Good for recognizing unknown states, and to complement classifiers. Works best with low dimensionality features like the output of the spectral features block.	Edge Impulse	•	Add
<b>Regression</b> Learns patterns from data, and can apply these to new data. Great for predicting numeric continuous values.	Edge Impulse		Add
Some learning blocks have been hidden based on the data in your p	project. Show all bl	ocks anyway	
			Cancel

The final Impulse design is as shown in the figure below, click the **Save Impulse** button on the far right.

Time series data	•	Spectral Analysis	Classification	Output features
Input axes (3)		Name	Name	4 (idle, lift, maritime, terrestrial)
		Spectral features	Classifier	
Window size	0	Input axes (3)	Input features	
	2000 ms.	aceX	Spectral features	save impulse
Window increase	Ø	accY	Output features	
•	82.005	accZ	4 (idle, lift, maritime, terrestrial)	
Frequency (Hz)	Ð		•	
Zero-pad data	Ø		•	
		•	Anomaly Detection (K-means)	
		Add a processing block	Name	
			Anomaly detection	
			Input features	
			Spectral features	
			Output features	
			1 (Anomaly score)	

#### **Generating features**

At this point in our project, we have defined the pre-processing method and the model designed. Now, it is time to have the job done. First, let's take the raw data (time-series type) and convert it to tabular data. Go to the **Spectral Features** tab, select **Save Parameters**, and at the top menu, select **Generate Features** option and **Generate Features button**:

	#1 - Click to set a description fo	r this version		
Dashboard     Devices     Data sources	Raw data	_	Shew: All labels V terrestrial.3)ii.64gp (terrestrial	· · · ·
<ul> <li>Data acquisition</li> <li>Impulse design</li> </ul>	10 0 0 0 0 0	2040 2040 4050 4050	500 6120 7140 8140	9180
Create impulse     Spectral features     Classifier	Raw features 🗇	, 9.2902, 8.2018, 8.408, 9.4721, 8.3033, 1.8303, 18.4075, 8.3079, 1.4532, 9.5214, 8	DSP result After filter	
Anomaly detection     EON Tuner     Retrain model	Parameters Filter		and the second and the second	offersofter
Clive classification Model testing Versioning	Scale axes Type	1 none v	3 4 0.00 215.59 431.37 647.06 842.75 1078.43 1294.12 15 5ample #	1725.49 1941.18
Deployment	Spectral power		Spectral power (log)	
💅 Documentation	FFT length Take log of spectrum?	36 [2]	0 65 0 65 1.0	
	Overlap FFT frames?	Seve garameter	8.00 3.19 6.38 9.66 12.75 15.94 Propung (Pt)	19.13 22.31 25.50
		6	8.555, -8.668, -1.1388, 8.7112, -8.1549, -8.1218, -8.5697, -8.7228, -8.3365, -8.6897, -8.1 On-device performance ©	5847, 0.7133, -0.3078, 4.2100, 0.
			PROCESSING TIME     PRACEASING TIME     PRACE RAIN USAGE     2 KB	
	© 2022 Edgeimpulse Inc. All rights reserved			Ø

	Parameters Generate features	
	Training set	Feature explorer ①
<ul> <li>Dashboard</li> <li>Devices</li> </ul>	Data in training set 5m 30s	• •
Z Data sources	Classes 4 (idle, lift, maritime, terrestrial)	tat     tat     terestral
Data acquisition	Training windows 3,333	
<ul> <li>Impulse design</li> <li>Create impulse</li> </ul>	Calculate feature importance	and the second s
Spectral features		
Classifier	Generate features	
Anomaly detection	-	
Retrain model	Feature generation output	
A Live classification	The Dec 8 0010013 2022 Finished emeeding Reducing dimensions for visualizations OK Scheduling ish in finister	terrestrial.3j5jst9t 20 Window: 8000 - 10000 ms. 10 Announce on all groups and an announce on the second seco
Model testing	Destarted Destarted Determining feature importance 1/3/3 Determining neuron importance for all classes	Label: terrestrial 0-10-10-10-10-10-10-10-10-10-10-10-10-10
Versioning     Deskument	<ul> <li>(12) 5 betensining feature importance for idle</li> <li>(13) 5 betensining feature importance for idle</li> <li>(14) 5 betensining feature importance for artifus</li> </ul>	View features         -20           0         1040         2080         3120         4140         5200         6240         7280         8320         9360
	[S:3] Determining feature importance for terrestrial Determining feature importance GK	Feature Importance (1) All data
getting started	Jub completed	
Sa Forums		acc' RMS
		actY Spectral Power 11.16 - 14.34 Hz
		acc' Spectral Power 1.59 - 4.78 Hz
		accr (MMS
		• Shaw more
		On-device performance 🗇
		PROCESSING TIME     11 ms.     PARK EMA USAGE     2 KB
		0

Each 2-second window data will be converted into one data point of 63 features. The Feature Explorer will show those data in 2D using <u>UMAP</u>.

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualisation similarly to t-SNE, but also for general nonlinear dimension reduction.

With the visualization, it is possible to verify that the classes present an excellent separation, which indicates that the classifier should work well.

Optionally you can analyze how important each one of the features is for one class compared with other classes.

# Training

Our model has four layers, as shown below:



As hyperparameters, we will use a Learning Rate of 0.005 and 20% of data for validation for 30 epochs.

E	EDGE IMPULSE	Neural Network settings		ı
	Dashboard	Training settings		
	Devices	Number of training cycles ⑦	30	
2	Data acquisition	Learning rate ⑦	0.0005	
~	Impulse design	Advanced training settings		
	Create impulse	Validation set size ⑦	20	%
	Spectral features	Split train/validation set on metadata key ⑦		
	Classifier	Batch size ⑦	32	
	<ul> <li>Anomaly detection</li> </ul>	Auto-balance dataset ③		
۲	EON Tuner	Profile int8 model ⑦		
*	Retrain model			
22	Live classification	Neural network architecture		
	Model testing	Input layer (63 fe	eatures)	
ş	Versioning			
Û	Deployment	Dense layer (20 r	neurons)	
		Dense layer (10 r	neurons)	
GET	TING STARTED	Add an extra	layer	
Q	Documentation			
2	Forums	Output layer (4)	classes)	
		Start traini	ing	

After training, we can see that the accuracy is 100%.



If a K-means block for anomaly detection has been added during model design, an additional section for **Anomaly Detection** will appear under the **Impulse Design** column on the left, as shown in the image below. Once inside the Anomaly Detection section, click [Select Suggested Axes], and the system will automatically make selections based on previously calculated important features. Then click on the [Start Training] button to begin the training. Results will be output in the Anomaly Explorer on the right after completion.



At this point, we have completed the basic machine learning training process.

# Testing

Using the 20% of data set aside during the data collection phase, we can verify the model's performance with unknown data. As shown in the image below, click on the Model Testing section on the left side of the Edge Impulse interface. Next to the [Classify All] button, there is an icon with three dots, click on it to open the **Set Confidence Thresholds** popup window. Here, you can set confidence thresholds for the results of the two learning blocks. We should define an acceptable threshold for results considered as anomalies. If a result is not 100% (which is often the case) but is within the threshold range, it is still usable.



Press the **Classify All** button to start the model testing. The model test results will be displayed upon completion, as shown in the image below.

	Test data				Classify all		Model testing o	utput						•
Dashboard	Set the 'expected	outcome' for each samp	le to the de	sired outcome to	automatically score the impulse.		Copying features Copying features Copying features Copying features	from DSP block. from DSP block from processing	OK blocks OK					
Devices	SAMPLE NAME	EXPECTED OUTCO	LENGTH	ACCURACY	RESULT		Classifying data. Scheduling job in	cluster						
Z Data sources	testing.3jiuj5ke	testing	10s		63 anomaly, 36 idle, 1 mari	1	Container image p Job started	ulled!						
Data acquisition	testing.3jiue2tu	testing	10s		99 terrestrial, 2 uncertain	1	Classifying data	for Anomaly det	ection GK					
<ul> <li>Impulse design</li> </ul>	idle.3j5h0m3n	idle	10s	100%	101 idle	1	Job completed							
Create impulse	idle.3j5h5u9l	idie	105	100%	101 idle	1.								
<ul> <li>Spectral features</li> </ul>	maritime.3j5iuc	. maritime	10s	100%	101 maritime	1.1	Model testing r	esults						
<ul> <li>Classifier</li> </ul>	maritime.3j5ivg	maritime	10s	100%	101 maritime	1	-							
Anomaly detection	lift:3j5j52jp	In	10s	100%	101 lift	1	3 100.00	96						
Retrain model	lift_3j5j621i	In	10s	100%	101 lift:	1		IDLE	LIFT	MARITIME	TERRESTRIAL	ANOMALY	UNCERTA	AIN
the classification	terrestrial.3j5ja	terrestrial	10s	100%	101 terrestrial		LIFT	100%	0%	0%	0%	0%	0%	
Model testion	terrestrial.3/5ib.	terrestrial	10s	100%	101 terrestrial		MARITIME	0%	0%	100%	0%	0%	0%	
- model testing							ANOMALY							
<ul> <li>Versioning</li> </ul>							F1 SCORE	1.00	1.00	1.00	1.00	0.00		
Deployment							Feature explorer	•						
ETTING STARTED							idle - correct							
er Documentation							maritime - corr	ect	-	Sen.				
Ecologia							testing	reu.			A			
								-	8					
							•			0		<b>(11)</b>	Ø	
								anto	•	000		2		
								-	-			-		

#### **Live Classification**

Once the model is obtained, you should use the opportunity to test the Live Classification when your device is still connected to the Edge Impulse Studio. As shown in the image below, click on the Live Classification section on the left side of the Edge Impulse interface, then click the [Start Sampling] button.

P	Dashboard				
	Devices	Did you know? Cap	oture data from any device or development board in	to the testing category to live classify data - Show options	×
7	Data sources				
8	Data acquisition	Classify new data	-t- Connect using WebUSB	Classify existing test sample	
*	Impulse design				
	Create impulse	Device ⑦	XIAO BLE Sense ~	testing.3jkrila5 (testing)	~
	<ul> <li>Spectral features</li> </ul>	Sensor	Sensor with 3 axes (accX, accY, accZ, $$		
	Classifier	Sample length (ms.)	10000	Load sample	
	<ul> <li>Anomaly detection</li> </ul>	Frequency	50Hz ~		
۲	EON Tuner				
×	Retrain model		$\sim$		
ñ	Live classification				
8	Model testing				
P	Versioning	Classification r	esult		

At this time, you can, for example, shake the XIAO, the process is the same as the sampling; wait a few seconds, and the classification results will be given. As shown in the image below, I shook the XIAO vigorously, and the model unhesitatingly inferred that the entire process was **anomalous**.

Ξ	EDGE IMPULSE	ssification result	
0	Dashboard	mmary testing.3jkrpoa5	
	Devices	me testing 3jkrpaa5	
×	Data sources	pected outcome testing	
	Data acquisition		
	Create impulse	0 1019 2009 3038 4078 5098 6117 7137 8156 9176 Raw features ₿	
	Spectral features	-28.3151, 52.1852, 92.7726, -4.2073, -5.3892, 47.6987, -17.6635, -32.666.	
	Classifier	nime 0 Spectral features	
	Anomaly detection  EON Tumer	estrial 0 exected	
×	Retrain model		
n	Live classification	may 103 🚽 🕴 descharion 🧼 🏂 🛹	
8	Model testing	tailed result Show only unknowns	
2	Versioning	RESTAMP IOLE LIFT MARITIME TERRESTRI., ANOMA	
	angeographic.	0 1.00 0 0 26.40 Processed features () 36.7229, -1.4175, 4.2563, 2.4694, 2.4795, 2.8694, 2.4762, 3.2493, 2.7993	
617	TING STARTED	0 1.00 0 0 25.43	
	Forums	0 1.00 0 0 24.81     Anomaly explorer (3,436 samples)     @	

Try now with the same movements used during data capture. The result should match the class used for training.

#### - Attention -

Here, you will capture real data with your device and upload it to the Edge Impulse Studio, where the trained model will be used for inference (though the model is not in your device).

#### Deployment

Now it is time for magic<sup>\*</sup>! The Studio will package all the needed libraries, preprocessing functions, and trained models, downloading them to your computer. You should select the option Arduino Library and at the bottom, select **Quantized (Int8)** and **Build**.

EDGE IMPULSE		Configure your deployment					
Q	Dashboard	You can deploy your impulse minimizes latency, and runs	e to any device with minimal p	. This makes the mod power consumption. I	el run without an Read more.	internet connection,	
•	Devices	Q Arduino library	×				
2	Data acquisition						
*	Impulse design	SELECTED DEPL	OYMENT Y				
	Spectral features	ARDUINO An Arduino libr boards.	ary with exam	ples that runs on mos	t Arm-based Ardu	ino development	
	Classifier						
	Anomaly detection	MODEL OPTIMIZATIONS					
0	EON Tuner	Model optimizations can	increase on-d	evice performance bu	t may reduce accu	uracy.	
*	Retrain model	● Enable EON™ Co	ompiler Same	e accuracy, up to 50% l	ess memory. <mark>Learn</mark>	more	
ñ	Live classification	Quantized (int8)		SPECTRAL FEATURES	CLASSIFIER	TOTAL	
e l	Model testing	Selected 🗸	LATENCY	18 ms.	1 ms.	19 ms.	
	11000010050116		RAM	1.9K	1.4K	1.9K	
P	Versioning		FLASH	2	15.6K		
~	Deployment		ACCURACY				
	oepioyment	Upoptimized (float22)			C1 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	70741	
		onoptimized (noat32)	LATENCY	SPECTRAL FEATURES	CLASSIFIER	TOTAL	
GETI	TING STARTED	Select	RAM	1.9K	1.6K	1.9K	
17	Documentation		FLASH		16.5K	-	
1.4			ACCURACY				
2	Forums	To compare model accur optimizations.	racy, run mode	el testing for all availal	ble	Run model testing	
		Estimate for Arduino Nano 3		tex-M4F 64MHz) - Chang	e target		
				Build			

A Zip file will be created and downloaded to your computer.



On your Arduino IDE, go to Sketch tab and select the option Add .ZIP Library.



and Choose the zip file downloaded by the Studio:

	🚞 Downloads	0	
Name		Date Modified	
ei-xiao-ble-sense	emotion-classification-arduino-1	Friday, July 22, 2022 12	18 PM
	File Format: ZIP file	s or folders 😒	
			Cancel Choos

#### Inference

Now, it is time for a real test. We will make inferences wholly disconnected from the Studio. Let's change one of the code examples created when you deploy the Arduino Library.

In your Arduino IDE, go to File/Examples tab and look for your project, and on examples, select nano\_ble\_sense\_accelerometer:

Of course, the Arduino Nano BLE 33 differs from your board, the XIAO, but we can have the code working with only a few changes. For example, at the beginning of the code, you have the library related to Arduino Sense IMU: nano\_ble33\_sense\_accelerometer

nano\_ble33\_sense\_accelerometer\_continuous nano\_ble33\_sense\_camera nano\_ble33\_sense\_microphone nano\_ble33\_sense\_microphone\_continuous nicla\_sense\_inference nicla\_vision\_fusion nicla\_vision\_microphone nicla\_vision\_microphone nicla\_vision\_microphone\_continuous portenta\_h7\_camera portenta\_h7\_microphone portenta\_h7\_microphone\_continuous static\_buffer

- \*/

Change the "includes" portion with the code related to the XIAO nRF52840 Sense IMU:

```
/* Includes ------ */
#include <XIA0_BLE_Sense_-_Motion_Classification_inferencing.h>
#include "LSM6DS3.h"
#include "Wire.h"
//Create an instance of class LSM6DS3
LSM6DS3 xIMU(I2C_MODE, 0x6A); //I2C device address 0x6A
```

On the setup function, initiate the IMU using the name that you stated before:

```
if (xIMU.begin() != 0) {
 ei_printf("Failed to initialize IMU!\r\n");
}
else {
 ei_printf("IMU initialized\r\n");
}
```

At the loop function, the buffers: **buffer[ix]**, **buffer[ix + 1]** and **buffer[ix + 2]** will receive the 3 axis data captured by the accelerometer. On the original code, you have the line:

```
IMU.readAcceleration(buffer[ix], buffer[ix + 1], buffer[ix + 2]);
```

Change it with this block of code:

```
buffer[ix] = xIMU.readFloatAccelX();
buffer[ix + 1] = xIMU.readFloatAccelY();
buffer[ix + 2] = xIMU.readFloatAccelZ();
```

Get this code online <a href="https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO\_BLE\_Sense\_accelerometer/NIAO\_BLE\_Sense\_accelerometer.ino">https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO\_BLE\_Sense\_accelerometer.ino</a>

And that is it! You can now upload the code to your device and proceed with the inferences.

#### You can see the result of the inference of each class on the images:





#### Post-processing

Now that we know the model is working since it detects the movements, we suggest that you modify the code to see the result with the XIAO completely offline (disconnected from the PC and powered by a battery, a power bank, or an independent 5V power supply).

The idea is that if one specific movement is detected, a particular LED could be lit. For example, if terrestrial is detected, the Green LED will light; if maritime, the Red LED will light, if it is a lift, the Blue LED will light; and if no movement is detected (idle), the LEDs will be OFF. You can also add a condition when an anomaly is detected, in this case, for example, a white color can be used (all e LEDs light simultaneously).

#### Conclusion

The Seeed Studio XIAO nRF52840 Sense is a giant tiny device! It is powerful, trustworthy, not expensive, low power, and has suitable sensors to be used on the most common embedded machine learning applications. Even though Edge Impulse does not officially support XIAO nRF52840 Sense, we also realized that it could be easily connected with the Studio.

On the GitHub repository, you will find the last version of the codes: <u>Seeed-XIAO-BLE-Sense</u>.

The applications for motion classification and anomaly detection are extensive, and the XIAO is well-suited for scenarios where low power consumption and edge processing are advantageous. Its small form factor and efficiency in processing make it an ideal choice for deploying portable and remote applications where real-time processing is crucial and connectivity may be limited.

# **Case Applications**

Before we finish, consider that Movement Classification and Object Detection can be utilized in many applications across various domains. Here are some of the potential applications:

#### Industrial and Manufacturing

- **Predictive Maintenance:** Detecting anomalies in machinery motion to predict failures before they occur.
- **Quality Control:** Monitoring the motion of assembly lines or robotic arms for precision assessment and deviation detection from the standard motion pattern.
- **Warehouse Logistics:** Managing and tracking the movement of goods with automated systems that classify different types of motion and detect anomalies in handling.

#### Healthcare

- **Patient Monitoring:** Detecting falls or abnormal movements in the elderly or those with mobility issues.
- **Rehabilitation:** Monitoring the progress of patients recovering from injuries by classifying motion patterns during physical therapy sessions.
- Activity Recognition: Classifying types of physical activity for fitness applications or patient monitoring.

#### **Consumer Electronics**

- **Gesture Control:** Interpreting specific motions to control devices, such as turning on lights with a hand wave.
- **Gaming:** Enhancing gaming experiences with motion-controlled inputs.

#### **Transportation and Logistics**

- **Vehicle Telematics:** Monitoring vehicle motion for unusual behavior such as hard braking, sharp turns, or accidents.
- **Cargo Monitoring:** Ensuring the integrity of goods during transport by detecting unusual movements that could indicate tampering or mishandling.

#### **Smart Cities and Infrastructure**

- **Structural Health Monitoring:** Detecting vibrations or movements within structures that could indicate potential failures or maintenance needs.
- **Traffic Management:** Analyzing the flow of pedestrians or vehicles to improve urban mobility and safety.

#### **Security and Surveillance**

- Intruder Detection: Detecting motion patterns typical of unauthorized access or other security breaches.
- Wildlife Monitoring: Detecting poachers or abnormal animal movements in protected areas.

#### Agriculture

- Equipment Monitoring: Tracking the performance and usage of agricultural machinery.
- Animal Behavior Analysis: Monitoring livestock movements to detect behaviors indicating health issues or stress.

#### **Environmental Monitoring**

- **Seismic Activity:** Detecting irregular motion patterns that precede earthquakes or other geologically relevant events.
- **Oceanography:** Studying wave patterns or marine movements for research and safety purposes.

# 4.3 Sound Classification (KWS)

In this section, we continue our exploration of Machine Learning on Seeed Studio XIAO nRF52840 Sense (also called XIAO BLE Sense), now classifying sound waves.

# 4.3.1 Things used in this project

#### Hardware components

- Seeed Studio XIAO nRF52840 Sense × 1
- Seeed Studio Seeeduino XIAO Expansion board × 1



#### Software apps and online services



<u>Arduino IDE</u>

# 4.3.2 Introduction

In the last section, Anomaly Detection & Motion Classification, we explored Embedded Machine Learning, or simply TinyML, running on the Seeed XIAO nRF52840 Sense. Besides installing and testing the device, we explored motion classification using actual data signals from its onboard accelerometer. This new project will use the same XIAO nRF52840 Sense to classify sound, explicitly working as "Key Word Spotting" (KWS). A KWS is a typical TinyML application and an essential part of a voice assistant.

#### But how does a voice assistant work?

To start, it is essential to realize that Voice Assistants on the market, like Google Home or Amazon Echo-Dot, only react to humans when they are "waked up" by particular keywords such as "Hey Google" on the first one and "Alexa" on the second.







Edge Impulse Studio

In other words, recognizing voice commands is based on a multi-stage model or Cascade Detection.

**Stage 1:** A smaller microprocessor inside the Echo Dot or Google Home continuously listens to the sound, waiting for the keyword to be spotted. For such detection, a TinyML model at the edge is used (KWS application).

**Stage 2:** Only when triggered by the KWS application on Stage 1 is the data sent to the cloud and processed on a larger model.

The video below shows an example of a Google Assistant being programmed on a Raspberry Pi (Stage 2), with an Arduino Nano 33 BLE as the tinyML device (Stage 1): https://youtu.be/e\_ OPgcnsyvM

To explore the above Google Assistant project, please see the tutorial: <u>Building an</u> <u>Intelligent Voice Assistant From Scratch</u>.





4.3.3 The KWS Project

Our KWS application will recognize three classes of sound:

- Keyword 1: UNIFEI
- Keyword 2: IESTI
- "SILENCE" (no keywords spoken, only background noise is present)

Optionally, for real-world projects, it is advised to include different words than keywords 1 and 2 in the class "Silence" (or Background) or even create an extra class with such words (for example a class "others").

# The Machine Learning Workflow

The main component of the KWS application is its model. So, we must train such a model with our specific keywords:



#### Dataset

The critical component of Machine Learning Workflow is the dataset. Once we have decided on specific keywords (UNIFEI and IESTI), all datasets should be created from zero. When working with accelerometers, creating a dataset with data captured by the same type of sensor was essential. In the case of sound, it is different because of what we will classify as audio data.

The critical difference between sound and audio is the type of energy. Sound is mechanical perturbation (longitudinal sound waves) that propagate through a medium, causing variations of pressure in it. Audio is an electrical (analog or digital) signal representing sound.

The sound waves should be converted to audio data when we speak a keyword. The conversion should be done by sampling the signal generated by the microphone in 16KHz with a 16-bit depth.



So, any device that can generate audio data with this basic specification (16Khz/16bits) will work fine. As a device, we can use the proper XIAO nRF52840 Sense, a computer, or even your mobile phone.

# Capturing online Audio Data with Edge Impulse and a smartphone

In the TinyML Made Easy: Anomaly Detection & Motion Classification section, we learned how to install and test our device using the Arduino IDE and connect it to Edge Impulse Studio for data capturing. For that, we use the El CLI function Data Forwarder, but according to Jan Jongboom, Edge Impulse CTO, audio goes too fast for the data forwarder to be captured. If you have PCM data already, then turning it into a WAV file and uploading it with the uploader is the easiest. With accelerometers, our sample frequency was around 50Hz, with audio being 16KHz.

So, we can not connect the XIAO directly to the Studio. But we can capture sound using any smartphone connected to the Studio online.

We will not explore this option here, but you can easily follow the EI <u>documentation</u> and <u>tutorial</u>.

# Capturing Audio Data with the XIAO nRF52840 Sense

The easiest way to capture audio and save it locally as a .wav file is using an expansion board for the XIAO family of devices, the <u>Seeed Studio XIAO Expansion board</u>.



This expansion board enables the building of prototypes and projects easily and quickly, using its rich peripherals such as OLED Display, SD Card interface, RTC, passive buzzer, RESET/User button, 5V servo connector, and multiple data interfaces.

This project will focus on classifying keywords, and the MicroSD card available on the device will be very important in helping us with data capture.

#### Saving recorded audio from the microphone on an SD card

Connect the XIAO nRF52840 Sense on the Expansion Board and insert an SD card into the SD card slot at the back. > The SD Card should be pre-formated as FAT or exFAT.



Next, download the <u>Seeed\_Arduino\_FS Library</u> as a zip file:

P master - P 1 branch	©1 tag		Go to file	Add file -	> Code +	About
bigbearishappy Update n	nic_Saved_OnSDcard.ino	1	Local	Codespaces	New	No description, website, or topics provided.
examples	Update mic_Saved_OnSDcarr added README, docs and pic		E Clone ⑦ HTTPS SSH GitHub CLI		☐ Readme ∰ Apache-2.0 license ☆ 8 stars ◇ 11 watching	
resources						
src src	fix the sharp noise at the beg	https://github.com/Seeed-Studio/Seeed_And D				
gitignore     w	wip, recording and plotter out				♀ 0 forks	
	added README, docs and pic	README, docs and pic				
README.md     added README, docs and pi				Releases 1		
🗅 keywords.txt	added README, docs and pic	d pic Download ZIP d pictures 16 months ago			S Initial release, only supports (Latest)	
library.properties	added README, docs and pic				ionths ago	on 56p 7, 2021
E README.md					Packages	
Seeed Arduino Mic						No packages published
000007/1000						Castributers

And install the downloaded library: Seeed\_Arduino\_Mic-master.zip on your Arduino IDE: Sketch -> Include Library -> Add .ZIP Library...

•	•		Verify/Compile	ЖR	🔤 sketch_jun2b   Arduino IDE 2.1.0	)
			Upload	жU		
	$\mathbf{\mathcal{S}}$	7	Configure and Upload		÷	
		eketek	Upload Using Programmer	☆業U		
		sketch	Export Compiled Binary	τжs		
		1	<ul> <li>Optimize for Debugging</li> </ul>			
	_	2	Ohaw Okatab Faldar	D= 0.0 1/	e, to run once:	
T		3	Show Sketch Folder	1. JE K	Manager 1 Manada a	0.00
		4	Include Library	,	Manage Libraries	10° A
	Hh	5	Add File		Add .ZIP Library	
	ШЛ	7	// put your main co	de here	A state of the sta	
		2	// put your main co	ue nere	Arduino libraries	
	$\sim$	9	1		Adafruit TinyUSB Library	
	UC	10	1		Adafruit Zero DMA Library	
		10			Energy Saving	
(	$\frown$				FlashStorage	

Next, navigate to File > Examples > Seeed Arduino Mic > mic\_Saved\_OnSDcard to open the sketch: mic\_Saved\_OnSDcard.

Each time you press the reset button, a **5 seconds audio sample** is recorded and saved on the SD card. I changed the original file to add LEDs to help during the recording process as below:

- During the time that LED Red is ON is possible to record ==> RECORD
- During the file writing process, LED Red is OFF ==> WAIT
- When finished writing, LED Green is ON ==> Press Reset Button once and wait for LED Red ON again, and proceed with a new sample recording

I realized that sometimes at the beginning and the end of each sample, a "spike" was recorded, so I cut the initial 300ms from each 5s sample. The spike verified at the end always happened after the recording process and should be eliminated on Edge Impulse Studio before training. Also, I increased the microphone gain to 30 dB.

The complete file (Xiao\_mic\_Saved\_OnSDcard.ino) can be found on the Git Hub (3\_KWS): <u>Seeed-XIAO-BLE-Sense</u>.

During the recording process, the way file names are shown on Serial Monitor:

•••	/dev/cu.usbmodem1101	
		Send
Capturing .wav samples		
SD initialization success!		
End of PDM		
Finished sampling		
Writing to test6134.wav		
Finished writing		
Capturing .wav samples		
SD initialization success!		
End of PDM		
Finished sampling		
Writing to test6456.wav		
Finished writing		
Capturing .wav samples		
SD initialization success!		
End of PDM		
Finished sampling		
Writing to test6005.wav		
Finished writing		
Capturing .wav samples		
SD initialization success!		
End of PDM		
Finished sampling		
Writing to test6083.wav		
Finished writing		
Autoscroll Show timestamp	Both NL & CR 😒	115200 baud 📀 Clear output

Take the SD card from the Expansion Board and insert it into your computer:

-

•••	< > DATASET	
Locations	TEST6005.WAV	
Marcelo's MacBook Pro	TEST6083.WAV	
🖂 Macintosh HD	TEST6089.WAV	
🖨 DATASET 🔺	TEST6134.WAV	
Network	TEST6456.WAV	0
iCloud		
☐ iCloud Drive		
Documents		
Desktop		TEST6005.WAV
😁 Shared		Waveform audio - 160 KB
Favorites		▶ <b>□</b> 4
😻 Dropbox		Trim More

The files are ready to be uploaded to Edge Impulse Studio

# Capturing (offline) Audio Data with a smartphone or PC

Alternatively, you can use your PC or smartphone to capture audio data with a sampling frequency 16KHz and a bit depth of 16 Bits. A good app for that is <u>Voice Recorder Pro</u> (IOS). Save your record as .wav files and send them to your computer.

🕑 Q 🞼 🗹 🕂 🌣	O New Recording
	Preset Advanced
New Category	Record Forma' 23:51
Please enter the name of the new category to be created	August 24, 2022 08:19:06 AM 2022082:4081906.wav
Unifei 🛛 🕲	Sample Rate - 16,000 + No bookmark defined for this record.
Cancel OK	Bit Rate
	Bit Depth — 16 Bits +
	Channels – Mono +
"Unifei" UNIFEI Unifei's	Encode Quality
gwertyuiop	Estimate File Size 1.9MB/Minutes
asdfahikl	Silence Detection 2 NO +
	Save to Category Unifer
space return	Record Category Play & Record
· · · · · · · · · · · · · · · · · · ·	

Note that any smartphone app can be used for audio recording or even your computer, for example using <u>Audacity</u>.

# **Training model with Edge Impulse Studio**

When the raw dataset is created, you should initiate a new project at Edge Impulse Studio:



Once the project is created, go to the **Data Acquisition** section and select the **Upload Existing Data** tool. Choose the files to be uploaded, for example, I started uploading the samples recorded with the XIAO nRF52840 Sense:



The samples will now appear in the **Data acquisition** section:

→ C ① ■ studio.edg	eimpulse.com/studio/132455/acquisiti	on/training?page=1	¥ 0 ¥ 🛪 🛛 🍇
EDGE IMPULSE	Training data Test data	Data explorer   Upload dat	a Export data
	Did you know? You a	n cantura data fram anu davica ar davala	ement beard an unlead your axisting datasets. Show antions
Dashboard		in capture data from any device of develo	primeric doard, or optional your existing datasets - Snow options
Devices	DATA COLLECTED	TRAIN / TEST	Depart new data
Data sources	30s	100% 🔺 🥥	Record new data
Data acquisition			No devices connected to the remote management API.
Impulse design	Collected data	T 🖬 ± 🗆	
Create impulse	SAMPLE NAME LABEL	ADDED LENGTH	RAW DATA
EON Tuner	TEST6953.s1 unifei	Today, 10:2 5s ‡	1510005
Retrain model	TEST6456 unifei	Today, 10:1 5s I	10000 8000
Live classification	TEST6089 unifei	Today, 10:1 5s I	6000 4000 2000
Model testing	TEST6083 unifei	Today, 10:1 5s i	-2000
Versioning	TEST6134 unifei	Today, 10:1 5s I	-6000 -6000 -8000
Deployment	TEST6005 unifei	Today 10:1 Se i	-10000 0 520 1040 1560 2080 2600 3120 3640 4160 4680
			audio
TING STARTED			
Documentation			► 0:00 / 0:00 ····· ··· ··· ··· ··· ··· ··· ···

Click on three dots after the sample name and select **Split sample**. Once inside de tool, split the data into 1-second records (try to avoid start and end portions):


This procedure should be repeated for all samples. After that, upload other class samples (IESTI and SILENCE) captured with the XIAO and your PC or smartphone.

### - Attention -

For longer audio files (minutes), first, split into 10-second segments and after that, use the tool again to get the final 1-second splits.

In the end, the dataset has around 701-second samples for each class:

EDGE IMPULSE		MJRoBot (Marcelo Roval)	YIAO BLE Sen	nse - Sound Classification (KWS)
Dashboard	Training data Test data	Data explorer	Upload dat	ta Export data
Devices	Did you know? You	can capture data from any di	evice or develo	apment board, or upload your existing datasets - Show options
Data sources				
Data acquisition	3m 49s	TRAIN / TEST	0	Record new data
Create impulse	Collected data	т 🗉 ,	± 0	No devices connected to the remote management API.
EON Tuner	SAMPLE NAME LABEL	ADDED LENG	тн	RAW DATA
Retrain model	TEST5990.s4 lesti	Today, 11:5 1s	I	TEST5990.s4
Live classification	TEST5990.s3 iesti	Today, 11:5 1s	- 1	10000 8000
Model testing	TEST5990.s2 iesti	Today, 11:5 1s	r	6000 4000 2000
Versioning	TEST5990.s1 iesti	Today, 11:5 1s	1.	-2000 4000
Deployment	TEST6831.s5 iesti	Today, 11:5 1s	1	-6000 -8000 -10000
TING STARTED	TEST6831.s4 iesti	Today, 11:5 1s	-	0 104 208 312 416 520 624 728 832 936
Documentation	TEST6831.s3 iesti	Today, 11:5 1s	1	o sudio
Forums	TEST6831.s2 iesti	Today, 11:5 1s	1.	• 0:00/00:0 • · · ·

Now, you should split that dataset into Train/Test. You can do it manually (using the three dots menu, moving samples individually) or using Perform Train / Test Split on Dashboard – Danger Zone.

	Administrative zone
Dashboard	Custom deploys ⑦ Show Linux deploy options ⑦
<ul> <li>Devices</li> <li>Data sources</li> <li>Data acquisition</li> </ul>	Save experiments
<ul> <li>Impulse design</li> <li>Create impulse</li> </ul>	Danger zone
<ul> <li>EON Tuner</li> <li>Retrain model</li> </ul>	Perform train / test split
Live classification     Model testing	Launch getting started wizard
<ul><li>Performance calibration</li><li>Versioning</li></ul>	Delete all data in this project
📦 Deployment	

We can optionally check all datasets using the tab Data Explorer. The data points seem apart, which means that the classification model should work:



# **Creating Impulse (Pre-Process / Model definition)**

An impulse takes raw data, uses signal processing to extract features, and then uses a learning block to classify new data.

	puise.com/studio/132466/create-imj	puise		нох ж ц 🍘
🔁 EDGE IMPULSE	М	JRoBot (Marcelo Roval) / XIAO BLE Sere	se - Sound Classification (KWS)	۲
Dashboard     Devices     Data sources	An impulse takes raw da	ta, uses signal processing to extract feat	ures, and then uses a learning block t	o classify new data.
<ul> <li>Data acquisition</li> <li>Impulse design</li> </ul>	Time series	Audio (MFCC)	Classification (Keras)	Output features
Create impulse	Input axes	Name	Name	3 (iesti, silence, unifei)
Ø EON Tuner	audio	MFCC	NN Classifier	
>4 Retrain model	Window size (2)	Input axes (1)	Input features	Save Impulse
T Live classification	1000 ms.	🛃 audio	MFCC	
Model testing	Window increase ⑦		Output features	
P Versioning	500 ms		3 (iesti, silence, unifei)	
Deployment	Frequency (Hz) ⑦			
	16000 C			
GETTING STARTED	Zero-pad data 🕜			
17 Documentation	<b>*</b>			
Re Forums	•	*	<u>A</u>	
		Add a processing block	Add a learning block	

First, we will take the data points with a 1-second window, augmenting the data, sliding that window each 500ms. Note that the option zero-point pad is set. It is important to fill with zeros samples smaller than 1 second in some cases, I reduced the 1000 ms window on the split tool to avoid noises and spikes.

Each 1-second audio sample should be pre-processed and converted to an image (for example, 13 x 50 x 1). We will use Audio (MFCC), which extracts features from audio signals using <u>Mel</u> <u>Frequency Cepstral Coefficients</u>, which are well suited for the human voice, which is our case here.





Next, we select the **Classification** block to build our model from scratch using a Convolution Neural Network (CNN).

# **Pre-Processing (MFCC)**

The next step is to create the images to be trained in the next phase:

Dashboard   Devices   A Inpulse design   - Create impulse   - Normalization window   - Decomentation   - Create impulse   - Documentation   - Create impulse   - Decomentation   - Create impulse<	-	EDGE IMPULSE	Raw data		► 0.0	0/0:01 -		• I	TESTS	990.s4 (ie:	iti)		×
2       Data sources       0       00       200       300       401       501       601       701       902         2       Data acquisition       Raw features       Impulse design	XNO BLE Sense - Sound Class     YNO BLE Sense - Sound Cla		10000 5000 0 -5000									oaud	
Data adquisition   Impulse design   - Create impulse   - Streate impulse   - MCC   - MCC   - MCC   - MCC   - NN Classifier   Mel Frequency Ceptral Coefficients   - Live classification   Frame length   0.02   - Model testing   Parameters   Model testing   Prame stride   - Riter number   32   - Normalization window   size   - Documentation   - Marmatization window   - Mar	2	Data sources	-10000 0 100	200	300 401	501	601	701	802	902			
Impulse design     Raw features     DSP result       • Create impulse	•	Data acquisition	- Martin										
<ul> <li>Create impulse</li> <li></li></ul>	٨	Impulse design	Raw features 🔘				DSP rest	ult					
MVCC      MVCSUBURG     Parameters Mel Frequency Ceptral Coefficients     Mumber of coefficients     Model testing     Frame stride     do2     Model     froeguency     fifter number     32     Model     fifter number     32     Mormalization window     size     Model     Model testing     fifter quency     do2     Model     fifter quency     Go2     Model     fifter     fif		Create impulse	-63, -64, -64, -64, -65,	-64, -63, -61,	, -63, -64, -64, -6	-	Cepstral	Coefficients					
N Classifier     Parameters       © EON Tuner     Mel Frequency Ceptral Coefficients       Retrain model     Number of coefficients       Retrain model     Number of coefficients       Model testing     Frame length     0.02       Model testing     Prame stride     0.02       Versioning     Filter number     3.2       Deployment     Filter number     3.2       Mormalization window size     101       Documentation     Low frequency       Kernins     Low frequency       Retrained     Low frequency       Migh frequency     Cick to set		MFCC					100	20	-			1.5	2
© EON Tuner     Mel Frequency Cepstral Coefficients       Retrain model     Number of coefficients     13       Processed features     Processed features       Model testing     Frame length     0.02       Model testing     Prame stride     0.02       Versioning     Filter number     3.2       On-device performance ③     101       BetTING STARED     Normalization window size       Documentation     size       Low frequency     300       High frequency     Cick to set		<ul> <li>NN Classifier</li> </ul>	Parameters				1.5	1925	942	100	1	-	2
Retrain model     Number of coefficients     13       Number of coefficients     13       Retrain model     Frame length     0.02       Model testing     Frame stride     0.02       Versioning     Filter number     32       Deployment     Filter number     32       of Deployment     Filter number     32       of Documentation     Normalization window sate     101       Documentation     Sate     101       High frequency     300     101	8	EON Tuner	Mel Frequency Cepstral	Coefficients			100	100		24	20		
Itve classification     Frame length     0.02       Model testing     Frame stride     0.02       Versioning     Frame stride     0.02       Deployment     Filter number     32       FFI length     256       On-device performance ②       PROCESSING TIME       Documentation       Size       Low frequency     300       High frequency     Cick to set	×	Retrain model	Number of coefficients	13									
Model testing     Frame stride     0.02       Versioning     Filter number     32       Deployment     FIT length     256       ST Documentation     Normalization window size     101       Documentation     Low frequency     300       High frequency     Cick to set	n:	Live classification	Frame length	0.02			Processe	d features					
Prame stride     0.02       Deployment     Filter number       32     On-device performance ③       FFT length     256       FFT length     256       Ø Documentation     Normalization window size       Documentation     Low frequency       High frequency     000	8	Model testing					-0.8319,	8.5785, -1.32	53, -0.34	1, 0.651	2, 0.2395	, 1.35	25
Deployment     Filter number     32     On-device performance ()       iFT length     256     ()     ()       ifT length     256     ()     ()       if Documentation     Normalization window size     101     ()       if Documentation     Low frequency     300       High frequency     Cick to set	,	Versioning	Frame stride	0.02									
IFFT length     256       GETTING STATED     Normalization window size       Documentation     Size       Low frequency     300       High frequency     Cick to set		Deployment	Filter number	32			On-devi	ce performa	ince 🕜				
detTrike STARTED g Documentation size Forums Low frequency High frequency Cick to set			FFT length	256				PROCESSING TI	ME		PEAK RAN	USAGE	
Documentation     size     Forums     Low frequency     Click to set	SETT	ING STARTED	Normalization window	101			0	177 ms.			17 KB		
Forums     Low frequency     300 High frequency     Click to set	Ø	Documentation	size	101									
High frequency Click to set	•	Forums	Low frequency	300									
			High frequency	Click to set									
Pre-emphasis			Pre-emphasis										

We will keep the default parameter values. We do not spend much memory to pre-process data (only 17KB), but the processing time is relatively high (177 ms for a Cortex-M4 CPU as our XIAO). Save parameters and generate features:



### Going under the hood

To understand better how the raw sound is preprocessed, look at the Feature Engineering for Audio Classification chapter. You can play with the MFCC features generation by downloading this <u>notebook</u> from GitHub or <u>Opening it In Colab</u>.

### **Model Design and Training**

We will use a simple Convolution Neural Network (CNN) model, tested with 1D and 2D convolutions. The basic architecture has two blocks of Convolution + MaxPooling ([8] and [16] filters, respectively) and a Dropout of [0.25] for the 1D and [0.5] for the 2D. For the last layer, after Flattening, we have [3] neurons, one for each class:



As hyper-parameters, we will have a **Learning Rate** of [0.005] and a model trained by [100] epochs. We will also include a data augmentation method based on <u>SpecAugment</u>. We trained the 1D and the 2D models with the same hyperparameters. The 1D architecture had a better overall result (91.1% accuracy) when compared with 88% of the 2D, so we will use the 1D.

Using 1D convolutions is more efficient because it requires fewer parameters than 2D convolutions, making them more suitable for resource-constrained environments.



If you want to understand what is happening "under the hood," you can download the pre-processed dataset (MFCC training data) from the Dashboard tab and run this Jupyter Notebook, playing with the code or Opening it In Colab. You should adapt the notebook for your data and model. For example, you can analyze the accuracy by each epoch:



### **Testing**

Testing the model with the data put apart before training (Test Data), we got an accuracy of 75%. Based on the small amount of data used, it is OK, but I strongly suggest increasing the number of samples.

÷	→ C ① ê studie	o.edgeimpulse.co	m/studio/1324	55/valid	ation			🏻 🔾 Ó 🌣 🏦 🖬 👹 🗄
=	EDGE IMPULSE				MIR	oBot (Marcelo Rovai) / >	IAO BLE Se	nse - Sound Classification (WKS)
0	Dashboard .	This lists	all test data. You c	an manag	e this data thr	ough Data acquisition.		
•	Devices	-					-	
z	Data sources	Test data				Classify all	1	Model testing output -
8	Data acquisition	fat the largest	d as dealers of the sec		to the design	d en de seu de se de		
*	Impulse design	score the impu	la outcome tor ea he.	on sample	to the desire	d outcome to automatica	4	Model testing results
	Create impulse	SAMPLE NAME	EXPECTED OUTC	LENGT	ACCURACY	RESULT		
	• MFCC	TEST5990.s2	lesti	15	100%	1 iesti	1	8 ACCUBACY 75.00%
	NN Classifier	TEST6831.s3	iesti	16	100%	1 iesti	1	IEST) SILENCE UNIFER UNCERTAIN
0	EON Tuner	TEST6770.41	iesti	15	0%	Luncertain		18277 60% 0% 6.7% 0.0%
*	Retrain model							UNIFEI 7.7% 7.7% 60.3% 23.1%
~	Live classification	11516/06.35	HUD	n	100%	Trends		P7 SCORE 0.72 0.37 0.73
	Model testing	TEST6786.s1	iesti	15	100%	1 (est)	1	Feature explorer ®
	wore resurg	TEST6650.s1	iesti	15	100%	Tiesti	1	e iesti-correct
Ľ	versioning	iesti_voice_r	iesti	15			1	summer - correct     summer
•	Deployment	iesti_voice_r	iesti	15	0%	1 uncertain		unifei-Incorrect
SET	ING STARTED	iesti voice r	lest	15	0%	1 uncertain		
ţ1	Documentation	leaf action of	lucil.			1 miles		
۰,	Forums	iest, voice, r	4510		010	1 prints		
		iesti,voice,r	iesti	15			1	
		iesti_voice_r	iesti	15	100%	1 lesti		
		iesti voice r	iesti	15			1	

Collecting more data, the Test accuracy moved up around 5%, going from 75% to around 81%:



Now, we can proceed with the project, but before deployment on our device, it is possible to perform Live Classification using a Smart Phone, confirming that the model is working with live and real data:

13:25		13:20 * Canara	at the last	13:23	419 ED	13:23	11 T =
AA 🔮 🗟 xone.edgeir	mpulse.com C	AA 👙 🗟 tone.edge	impulse.com C	AA 🖢 🗟 tone.edg	eimpulse.com 🖒	AA 👲 🔒 xor	ne.edgeimpulse.com 🖒
Classifier	_	Classifier		E Classifie	r	🛋 Cla	ssifier
Listenir	18	Listeni	ing	Lister	ning	(	Listening
iesti		silen	ce	uni	ifei		uncertain
1755 34.0	1012 (JANN)	(ese	USINCE UNIVER	10370	SUDICE UNITD	4533	Sectors stands
1	6.0 80	288 0.07 4	0.92 0.01	80.08	0.05 0.88	1 0.59	0.08 0.33
1	92 0.03	287 0.02 6	0.98 0.07	1- 0.24	0.63 (61)	t 0.26	0.71 0.04
< > m	0 0	< > m	00 10	1 5 1		1 3	1 m m

### **Deploy and Inference**

The Studio will package all the needed libraries, preprocessing functions, and trained models, downloading them to your computer. You should select the option Arduino Library and at the bottom, choose **Quantized (Int8)** and **[Build]**.

Deploy your impulse								
You can deploy your impulse to ar minimizes latency, and runs with r	ny device. This makes the model run w minimal power consumption. Read mo	ilthout an internet connection.						
and the second			Select optimizations (optionol)					
Lreate library	reverse and a that you are our on any of	faulta	Model optimizations can increase on- choices for your target. Or. just click B	levice performance by uild to use the current	at may reduce accurac by selected options.	y. Click below to analyze optimiza	itions and see the re	ecommended
			Enable EDN <sup>™</sup> Compiler Same accuracy, up to 50% Available optimizations for NN Cl	iess memory. Open se	purce.			
~	ARDUINO		Quantized (int8) 📥	INM USAGE	LATENCY	CONFUSION MATRIX		
C++ library	Arduino libraryi	Cube MX CMSIS-PACK	Commuty selected This optimization is recommended for best performance.	4.4K ruash usade 30.2K	4 ms ACCURACY 81.48%	4.0 4.0 4.1 4.1	101 101 101	1
			Unoptimized (float32)	RAM USAGE	LATENCY	CONFUSION MATRIX	12.4	
WA	DVIDIA		Click to select	FLASH USAGE	ACCURACY	24 623	- 14	24
	THERE.			33.2K	80.56%			- 14
WebAssembly	TensorRT library	Ethos-U library	Estimate for Conten MAP 804% 201 lot D					
brainchin					Build			
MetcaTF Model	Discon sem							
Meta TF Model	Simplicity Studio Component							

A Zip file will be created and downloaded to your computer:

		-1						•
EDGE IMPULSE	Configure your deploy	ment				Latest buik		
Dashboard	You can deploy your impuls latency, and runs with mini	e to any device. nal power cons	This makes the mo umption. Read mor	del run without an intern e.	et connection, minimizes		(Arduino library) lay, 10:48:49	View docs
Data acquisition	Q. Arduino library	ж						
Impulse design						Build output	t	×
Create impulse     MECC	SELECTED DEP	OYMENT IY				Creating job.	OK (ID: 14231562)	
<ul> <li>NN Classifier</li> </ul>	An Arduno				2		n cluster pulled! 5	
EON Tuner	MODEL OPTIMIZATION				$\mathcal{O}$		s 0K	
Retrain model	Model optimizations						pulled:	
Live classification	Enable EON**			Built Ardui	no library		wise SDK wise SDK OK	
Model testing	Quantized (intil)		Skat	Add this library through	the Arduino IDE via:		del	
Performance calibration	Selected 🗸		3640	in a shering cantory	- no the theory		and updating headers	
Versioning				Examples can then	be found under:		and updating headers OK	
Deployment		Fil	le > Examples >	XIA0_BLE_Sense_=_So	und_Classification_MASi	nferencing	OK	
	Unoptimized (float32)		MICC	NN CLASSIFIER	TOTAL	Job completed		
ETTING STARTED	Select	LATENCY	177 ms. 16.8K	19 mL 8.65	196 ms. 16.8K			
Documentation		FLASH		37.5K				
a Forums	To compare model arra	ACCURACY	testing for all avail	able ontimizations				
	Estimate for Cortex-MAP 80	iii: - Change targ	et					

On your Arduino IDE, go to the Sketch tab and select the option Add .ZIP Library.

Ś	Arduino	DE F	ile Edit	t Sketch Tools Help			
		• • •		Verify/Compile	₩R	sketch_jun2b   Arduino IDE 2.1.0	
		Ø	€ (	Upload Configure and Upload	жU	•	
		_	sketch	Upload Using Programmer	☆ ℋ U		
			Sketch	Export Compiled Binary	⊂₩S		
			2	✓ Optimize for Debugging		to run once:	
		<u>1</u>	3	Show Sketch Folder	∩: ₩K		
			4	Include Library	>	Manage Libraries 🗘 🛠	
		llh	5	Add File		Add .ZIP Library	
			7	// put your main c	ode here	Arduino libraries	
			8			Adafruit TinyUSB Library	
		£	9	}		Adafruit Zero DMA Library	
			10			Energy Saving	
		$\bigcirc$				FlashStorage	

And Choose the.zip file downloaded by the Studio:

	Downloads	Θ	
Name		Date Modified	
model.h5		Wednesday, August 24, 2022 4:56 PM	
saved_model 2		Wednesday, August 24, 2022 4:56 PM	
ei-xiao-ble-sensesound-classification-(kws)-ardui	ino-1.0.3.zip	Wednesday, August 24, 2022 3:32 PM	
ei-xiao-ble-sensesound-classification-(kws)-ardui	ino-1.0.2.zip	Wednesday, August 24, 2022 3:25 PM	
8 IMG 0989 PNG		Wednesday, August 24, 2022 1-25 PM	 
File Fo	ormat: ZIP fil	es or folders 😳	

Now, it is time for a real test. We will make inferences wholly disconnected from the Studio. Let's change one of the code examples created when you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab and look for your project, and on examples, select nano\_ble33\_sense\_microphone\_continuous:



Even though the XIAO is not the same as the Arduino, both have the same MPU and PDM microphone, so the code works as it is. Upload the sketch to XIAO and open the Serial Monitor. Start talking about one or another Keyword and confirm that the model is working correctly:

•••	/dev/cu.usbmodem1101	
		Send
iesti: 0.00130 silence: 0.00000 unifei: 0.99609		
Predictions (DSP: 109 iesti: 0.97526 silence: 0.00391 unifei: 0.02083	ms., Classification: 5 ms., Anomaly: 0 ms.	):
Predictions (DSP: 108 iesti: 0.97396 silence: 0.00260 unifei: 0.02214	ms., Classification: 5 ms., Anomaly: 0 ms.	):
Predictions (DSP: 108 iesti: 0.21094 silence: 0.41667 unifei: 0.37240	ms., Classification: 5 ms., Anomaly: 0 ms.	):
Predictions (DSP: 109 iesti: 0.98958 silence: 0.00781 unifei: 0.00130	ms., Classification: 5 ms., Anomaly: 0 ms.	):
Autoscroll Show timestam	p Both NL & CR 🧿 115200 bi	ud 👌 Clear output

### Postprocessing

Now that we know that the model is working by detecting our two keywords, let's modify the code so we can see the result with the XIAO nRF52840 Sense completely offline (disconnected from the PC and powered by a battery).

The idea is that whenever the keyword UNIFEI is detected, the LED Red will be ON; if it is IESTI, LED Green will be ON, and if it is SILENCE (No Keyword), both LEDs will be OFF.

If you have the XIAO nRF52840 Sense installed on the Expansion Board, we can display the class label and its probability. Otherwise, use only the LEDs.

Let's go by Parts: Installing and Testing the SSD Display In your Arduino IDE, Install the <u>u8g2</u> library and run the below code for testing:

```
#include <Arduino.h>
#include <U8x8lib.h>
#include <U8x8lib.h>
#include <Wire.h>
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(PIN_WIRE_SCL, PIN_WIRE_SDA, U8X8_PIN_NONE);
void setup(void) {
 u8x8.begin();
 u8x8.setFlipMode(0); // set number from 1 to 3, the screen word should rotate
180
}
void loop(void) {
 u8x8.setFont(u8x8_font_chroma48medium8_r);
 u8x8.setCursor(0, 0);
 u8x8.print("Hello World!");
}
```

And you should see the "Hello World" displayed on the SSD:



Now, let's create some functions that, depending on the values of pred\_index and pred\_value, will trigger the proper LED and display the class and probability. The code below will simulate some inference results and present them on display and LEDs:

```
/* Includes ------ */
#include <Arduino.h>
#include <U8x8lib.h>
#include <Wire.h>
#define NUMBER_CLASSES 3
/** OLED */
U8X8_SSD1306_128X64_NONAME_HW_I2C oled(PIN_WIRE_SCL, PIN_WIRE_SDA, U8X8_PIN_NONE);
Int pred_index = 0;
float pred_value = 0;
String lbl = " ";
```

```
void setup() {
 digitalWrite(LEDG, LOW);
 pinMode(LEDR, OUTPUT);
 lbl = "IESTI ";
 pinMode(LEDG, OUTPUT);
 break;
 pinMode(LEDB, OUTPUT);
 case 1:
 digitalWrite(LEDR, HIGH);
 turn_off_leds();
 lbl = "SILENCE";
 digitalWrite(LEDG, HIGH);
 digitalWrite(LEDB, HIGH);
 break:
 case 2:
 oled.begin();
 turn_off_leds();
 oled.setFlipMode(2);
 oled.setFont(u8x8_font_chroma48me-
 digitalWrite(LEDR, LOW);
 lbl = "UNIFEI ";
dium8 r);
 oled.setCursor(0, 0);
 break;
 oled.print(" XIAO Sense KWS");
 }
 oled.setCursor(0, 2);
}
 oled.print(" ");
 oled.setCursor(2, 4);
/**
* @brief turn off leds function -
 oled.print("Label:");
turn-off all RGB LEDs
 oled.print(lbl);
 oled.setCursor(2, 6);
*/
void turn off leds(){
 oled.print("Prob.:");
 digitalWrite(LEDR, HIGH);
 oled.print(pred_value);
 digitalWrite(LEDG, HIGH);
 }
 digitalWrite(LEDB, HIGH);
 void loop() {
}
 for (int i = 0; i < NUMBER_CLASS-</pre>
/**
 ES; i++) {
* @brief
 Show Inference Results
 pred_index = i;
on OLED Display
 pred value = 0.8;
*/
 display_oled(pred_index, pred_
void display_oled(int pred_index, float
 value);
pred_value){
 delay(2000);
 switch (pred_index){
 }
 case 0:
 }
 turn_off_leds();
```

Running the above code, you should get the below result:



You should merge the above code (Initialization and functions) with the nano\_ble33\_sense\_ microphone\_continuous.ino you initially used to test your model. Also, you should include the below code on loop() between the lines:

```
ei_printf(": \n");
...
#if EI_CLASSIFIER_HAS_ANOMALY == 1
```

And replacing the original function to print inference results on the Serial Monitor:

```
int pred_index = 0; // Initialize pred_index
float pred_value = 0; // Initialize pred_value
for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
 ei_printf(" %s: %.5f\n", result.classification[ix].label, result.classifica-
tion[ix].value);
 if (result.classification[ix].value > pred_value){
 pred_index = ix;
 pred_value = result.classification[ix].value;
 }
}
display_oled(pred_index, pred_value);
```

Here you can see how the final project is: <u>https://youtu.be/lex88hSqqyl</u>

The complete code can be found on the GitHub (3\_KWS): Seeed-XIAO-BLE-Sense.

### Conclusion

The Seeed XIAO nRF52840 Sense is really a giant tiny device! However, it is powerful, trustworthy, not expensive, low power, and has suitable sensors to be used on the most common embedded machine learning applications such as movement and sound.

Even though Edge Impulse does not officially support XIAO nRF52840 Sense (yet!), we also realized that it could use Studio for training and deployment.

On the GitHub repository, you will find the last version of the codes in the 3\_KWS folder: <u>Seeed-XIAO-BLE-Sense</u>

Before we finish, consider that Sound Classification is more than just voice. For example, you can develop TinyML projects around sound in several areas as:

- Security (Broken Glass detection)
- Industry (Anomaly Detection)
- Medical (Snore, Toss, Pulmonary diseases)
- · Nature (Beehive control, insect sound)

# 4.4 **Image Classification**

In this section, let's explore Computer Vision ML applications on the XIAO ESP32S3 Sense.

# 4.4.1 Things used in this project

### Hardware components

Seeed Studio Seeed XIAO ESP32S3 Sense × 1



# Software apps and online services



Arduino IDE



Edge Impulse Studio

# 4.4.2 Introduction

More and more, we are facing an artificial intelligence (AI) revolution where, as stated by Gartner, Edge AI has a very high impact potential, and it is for now!

In the "bull-eye" of emerging technologies, radar is the Edge Computer Vision, and when we talk about Machine Learning (ML) applied to vision, the first thing that comes to mind is Image Classification, a kind of ML "Hello World"!

Seeed Studio released a new affordable development board, the XIAO ESP32S3 Sense, which integrates a camera sensor, digital microphone, and SD card support. Combining embedded ML computing power and

photography capability, this development board is a great tool to start with TinyML (intelligent voice and vision AI).





### XIAO ESP32S3 Sense Main Features

- Powerful MCU Board: Incorporate the ESP32S3 32-bit, dual-core, Xtensa processor chip operating up to 240 MHz, mounted multiple development ports, Arduino / MicroPython supported
- Advanced Functionality: Detachable OV2640 camera sensor for 1600 \* 1200 resolution, compatible with OV5640 camera sensor, integrating an additional digital microphone
- Elaborate Power Design: Lithium battery charge management capability offers four power consumption models, which allows for deep sleep mode with power consumption as low as 14µA
- Great Memory for more Possibilities: Offer 8MB PSRAM and 8MB FLASH, supporting SD card slot for external 32GB FAT memory
- Outstanding RF performance: Support 2.4GHz Wi-Fi and BLE dual wireless communication, support 100m+ remote communication when connected with U.FL antenna
- Thumb-sized Compact Design: 21 x 17.5mm, adopting the classic form factor of XIAO, suitable for space-limited projects like wearable devices





For more details, please refer to the Seeed Studio WiKi page: https://wiki.seeedstudio.com/xiao\_esp32s3\_getting\_started/

# 4.4.3 Installing the XIAO ESP32S3 Sense on Arduino IDE

On Arduino IDE, navigate to File > Preferences, and fill in the URL:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package\_esp32\_dev\_index.json

### on the field ==> Additional Boards Manager URLs

• •	Additional Boards Manager URLs
Enter additional URLs, one	for each row
has a contract of the second second in	om/arduino/nackage seeeduino boards index ison
https://raw.githubusercor	ent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://nes.seedstudio. https://raw.githubusercor Click for a list of unofficia	boards support URLs

Next, open boards manager. Go to Tools > Board > Boards Manager... and enter with esp32. Select and install the most updated and stable package (avoid alpha versions) :

•••	Boards Manager	
pe All	ESP32	
sp32		
by Espressif Systems vi Boards included in this pa	rsion 2.0.8 INSTALLED	
ESP32 Dev Board, ESP32-	52 Dev Board, ESP32-S3 Dev Board, ESP32-C3 Dev Board.	
Nore Into		
		Close
		0.050

### - Attention -

Alpha versions (for example, 3.x-alpha) do not work correctly with the XIAO and Edge Impulse. Use the last stable version (for example, 2.0.11) instead.

On Tools, select the Board (XIAO ESP32S3):



Last but not least, choose the **Port** where the ESP32S3 is connected.

That is it! The device should be OK. Let's do some tests.

# 4.4.4 Testing the board with BLINK

The XIAO ESP32S3 Sense has a built-in LED that is connected to GPIO21. So, you can run the blink sketch as it is (using the LED\_BUILTIN Arduino constant) or by changing the Blink sketch accordingly:

### #define LED\_BUILT\_IN 21

```
void setup() {
 pinMode(LED_BUILT_IN, OUTPUT); // Set the pin as output
}
// Remember that the pin work with inverted logic
// LOW to Turn on and HIGH to turn off
void loop() {
 digitalWrite(LED_BUILT_IN, LOW); //Turn on
 delay (1000); //Wait 1 sec
 digitalWrite(LED_BUILT_IN, HIGH); //Turn off
 delay (1000); //Wait 1 sec
}
```





# 4.4.5 Connecting Sense module (Expansion Board)

When purchased, the expansion board is separated from the main board, but installing the expansion board is very simple. You need to align the connector on the expansion board with the B2B connector on the XIAO ESP32S3, press it hard, and when you hear a "click," the installation is complete.



As commented in the introduction, the expansion board, or the "sense" part of the device, has a 1600x1200 OV2640 camera, an SD card slot, and a digital microphone.

# 4.4.6 Microphone Test

Let's start with sound detection. Go to the <u>GitHub project</u> and download the sketch: <u>XIAOEsp2s3\_Mic\_Test</u> and run it on the Arduino IDE:



When producing sound, you can verify it on the Serial Plotter.

### Save recorded sound (.wav audio files) to a microSD card.

Now, the onboard SD Card reader can save .wav audio files. For that, we need to habilitate the XIAO PSRAM.

ESP32-S3 has only a few hundred kilobytes of internal RAM on the MCU chip. It can be insufficient for some purposes so that ESP32-S3 can use up to 16 MB of external PSRAM (Psuedostatic RAM) connected with the SPI flash chip. The external memory is incorporated in the memory map and, with certain restrictions, is usable in the same way as internal data RAM.

For a start, Insert the SD Card on the XIAO as shown in the photo below (the SD Card should be formatted to **FAT32**).

- Download the sketch <u>Wav\_Record</u>, which you can find on GitHub.
- To execute the code (Wav Record), it is necessary to use the PSRAM function of the ESP-32 chip, so turn it on before uploading.: Tools>PSRAM: "OPI PSRAM">OPI PSRAM
- Download the sketch Wav\_Record, which you can find on GitHub.
- To execute the code (Wav Record), it is necessary to use the PSRAM function of the ESP-32 chip, so turn it on before uploading.: Tools>PSRAM: "OPI PSRAM">OPI PSRAM



Edit	Sketch	Tools	Help		
		Auto Fo	rmat	96 T	
		Archive	Sketch		
		Fix Enco	oding & Reload		
		Manage	Elibraries	企業 I	
		Serial N	Ionitor	10 96 M	
		Serial P	lotter	12 96 L	
		WiFi101	/ WiFiNINA Firmware Updater		
		Board:	"XIAO_ESP32S3"	>	
		Upload	Speed: "921600"	>	
		USB Mo	ode: "Hardware CDC and JTAG"	>	
		USB CD	OC On Boot: "Enabled"	>	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
		USB Fir	mware MSC On Boot: "Disabled"	>	
		USB DF	U On Boot: "Disabled"	>	
		Upload	Mode: "UARTO / Hardware CDC"	>	
		CPU Fre	equency: "240MHz (WiFi)"	>	
		Flash M	lode: "QIO 80MHz"	>	
		Flash Si	ize: "8MB (64Mb)"	>	
		Partitio	n Scheme: "Default with spiffs (3MB APP/1.5MB SPIFFS)"	>	
		Core De	ebug Level: "None"	>	
		PSRAM	: "OPI PSRAM"	>	Disabled
		Arduino	Runs On: "Core 1"	>	V OPI PSRAM
		Events	Run On: "Core 1"	>	
		Erase A	II Flash Before Sketch Upload: "Disabled"	>	
		JTAG A	dapter: "Disabled"	>	
		Port: "/o	dev/cu.usbmodem1101 (ESP32S3 Dev Module)"	>	
		Get Boa	ard Info		
		Program	nmer	>	
		Burn Bo	ootloader		

- Run the code Wav\_Record.ino
- This program is executed only once after the user turns on the serial monitor, recording for 20 seconds and saving the recording file to a microSD card as "arduino\_rec.wav."
- When the "." is output every I second in the serial monitor, the program execution is finished, and you can play the recorded sound file with the help of a card reader.



The sound quality is excellent!

The explanation of how the code works is beyond the scope of this tutorial, but you can find an excellent description on the <u>wiki</u> page.

### 4.4.7 Testing the Camera

To test the camera, you should download the folder <u>take\_photos\_command</u> from GitHub. The folder contains the sketch (.ino) and two .h files with camera details.

• Run the code: take\_photos\_command.ino. Open the Serial Monitor and send the command capture to capture and save the image on the SD Card:

Verify that [Both NL & CR] is selected on Serial Monitor.



Here is an example of a taken photo:



# 4.4.8 Testing WiFi

One of the differentiators of the XIAO ESP32S3 is its WiFi capability. So, let's test its radio, scanning the wifi networks around it. You can do it by running one of the code examples on the board.

Go to Arduino IDE Examples and look for WiFI ==> WiFIScan

On the Serial monitor, you should see the wifi networks (SSIDs and RSSIs) in the range of your device. Here is what I got in the lab:

•••	/dev/cu.usbmodem1101
capture	Send
Setup done	
Scan start	
Scan done	
1 networks found	
Nr   SSID	RSSI   CH   Encryption
1   ROVAI TIMECAP	-73   6   WPA2
Scan start	
Scan done	
1 networks found	
Nr   SSID	RSSI   CH   Encryption
1   ROVAI TIMECAP	I -73   6   WPA2
Scan start	
Scan done	
Autoscroll Show timestamp	Both NL & CR 😌 115200 baud 😌 Clear output

Simple WiFi Server (Turning LED ON/OFF)

Let's test the device's capability to behave as a WiFi Server. We will host a simple page on the device that sends commands to turn the XIAO built-in LED ON and OFF.

Like before, go to GitHub to download the folder with the sketch <u>SimpleWiFiServer</u>.

Before running the sketch, you should enter your network credentials:

```
const char* ssid = "Your credentials here";
const char* password = "Your credentials here";
```

You can monitor how your server is working with the Serial Monitor.

	/dev/cu.usbmodem1101
	Send
Connecting to ROVAI TIMECA	\P
 WiFi connected.	
New Client.	
GET / HTTP/1.1 Host: 192.168.4.119	
Connection: keep-alive	1
User-Agent: Mozilla/5.0 (M Accept: text/html,applicat	/acintosh; Intel Mac OS X 10_15_7) AppleWebk ion/xhtml+xml,application/xml;q=0.9,image/c
Accept-Encoding: gzip, def Accept-Language: en-US,en;	late q=0.9,es;q=0.8,pt-BR;q=0.7,pt;q=0.6
Autoscroll 🗌 Show timestamp	Both NL & CR 🧕 115200 baud 🕘 Clear output

Take the IP address and enter it on your browser:



You will see a page with links that can turn the built-in LED of your XIAO ON and OFF.

### Streaming video to Web

Now that you know that you can send commands from the webpage to your device, let's do the reverse. Let's take the image captured by the camera and stream it to a webpage:

Download from GitHub the <u>folder</u> that contains the code: XIAO-ESP32S3-Streeming\_Video.ino.

Remember that the folder contains the ino file and a couple of .h files necessary to handle the camera.

Enter your credentials and run the sketch. On the Serial monitor, you can find the page address to enter in your browser:

• • •	/dev	/cu.usbmodem1101		
				Send
••				
iFi connected				
amera Stream Read	/! Go to: htt	p://192.168.	4.119	
		Death MIL & CO	0 115200 haved	
Autoscroll Show timestam	p	BOTH NL & CK	115200 Baud	Clear output

Open the page on your browser (wait a few seconds to start the streaming). That's it.

Streamlining what your camera is "seen" can be important when you position it to capture a dataset for an ML project (for example, using the code "take\_phots\_commands.ino".

Of course, we can do both things simultaneously: show what the camera sees on the page and send a command to capture and save the image on the SD card. For that, you can use the code Camera\_HTTP\_Server\_ STA, which can be downloaded from GitHub.



The program will do the following tasks:

- $\cdot~$  Set the camera to JPEG output mode.
- Create a web page (for example ==> http://192.168.4.119//). The correct address will be displayed on the Serial Monitor.
- If server.on ("/capture", HTTP\_GET, serverCapture), the program takes a photo and sends it to the Web.
- It is possible to rotate the image on webPage using the button [ROTATE]
- The command [CAPTURE] only will preview the image on the webpage, showing its size on the Serial Monitor
- The [SAVE] command will save an image on the SD Card and show the image on the browser.



• Saved images will follow a sequential naming (image1.jpg, image2.jpg.

• • •		/dev/cu.usbmodem1101			
					Send
NiFi connected.	.!				
Got IP: 192.168	.4.119				
HTTP server sta	rted				
Capturing Image	for view onl	.у			
The picture has	a size of 14	3360 bytes			
Saving Image to	SD Card				
Photo saved to	file				
Saved picture: /	/image1.jpg				
Savina Imaae to	SD Card				
Photo saved to	file				
Saved picture: /	/image2.jpg				
		Durk Mill & CD	1153	00 hand 0	C1

This program can be used for an image dataset capture with an Image Classification project.

Inspect the code; it will be easier to understand how the camera works. This code was developed based on the great Rui Santos Tutorial <u>ESP32-CAM Take Photo and Display in Web Server</u>, which I invite all of you to visit.

### Using the CameraWebServer

In the Arduino IDE, go to File > Examples > ESP32 > Camera, and select CameraWebServer

You also should comment on all cameras' models, except the XIAO model pins:

### #define CAMERA\_MODEL\_XIA0\_ESP32S3 // Has PSRAM

And do not forget the **Tools** to enable the PSRAM.

Enter your wifi credentials and upload the code to the device:



If the code is executed correctly, you should see the address on the Serial Monitor:



Copy the address on your browser and wait for the page to be uploaded. Select the camera resolution (for example, QVGA) and select [START STREAM]. Wait for a few seconds/minutes, depending on your connection. You can save an image on your computer download area using the [Save] button.



That's it! You can save the images directly on your computer to be used on projects.

# 4.4.9 Fruits versus Veggies - A TinyML Image Classification Project

Now that we have an embedded camera running, it is time to try image classification. For comparative motive, we will replicate the same image classification project developed to be used with an old ESP2-CAM:

ESP32-CAM: TinyML Image Classification - Fruits vs Veggies





The whole idea of our project will be to train a model and proceed with inference on the XIAO ESP32S3 Sense. For training, we should find some data (**in fact, tons of data!**).

But first of all, we need a goal! What do we want to classify?

With TinyML, a set of techniques associated with machine learning inference on embedded devices, we should limit the classification to three or four categories due to limitations (mainly memory). We will differentiate **apples** from **bananas** and **potatoes** (you can try other categories).

So, let's find a specific dataset that includes images from those categories. Kaggle is a good start:

https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition

This dataset contains images of the following food items:

- **Fruits** banana, apple, pear, grapes, orange, kiwi, watermelon, pomegranate, pineapple, mango.
- **Vegetables** cucumber, carrot, capsicum, onion, potato, lemon, tomato, radish, beetroot, cabbage, lettuce, spinach, soybean, cauliflower, bell pepper, chili pepper, turnip, corn, sweetcorn, sweet potato, paprika, jalepeño, ginger, garlic, peas, eggplant.

Each category is split into the **train** (100 images), **test** (10 images), and **validation** (10 images).

• Download the dataset from the Kaggle website to your computer.

Optionally, you can add some fresh photos of bananas, apples, and potatoes from your home kitchen, using, for example, the codes discussed in the last section.

# 4.4.10 Training the model with Edge Impulse Studio

We will use the Edge Impulse Studio to train our model. As you know, <u>Edge Impulse</u> is a leading development platform for machine learning on edge devices.

Enter your account credentials (or create a free account) at Edge Impulse. Next, create a new project:



### **Data Acquisition**

Next, on the UPLOAD DATA section, upload from your computer the files from chosen categories:

It would be best if you now had your training dataset split into three classes of data:

ED	GE IMPULSE									🛞 MjRoBet (Marcelo Re
Days	bourd		Upload existing da	ita						
De	Uropbox	.3					apple	Θ		Q. Search
Da Im e E C Re Lh	C Recents A Applications C Downloads C NM Mac Cloud Cloud Drive C Cloud Drive C Desktop C Shared Media A Macic C Macic	0 1 0 2 0 2 0 2 0 2 0 2 0 2	animals-10 Bowers Fruit_vegetable	0	ethers test tain validation	0 : 0 : 0 :	bople     banana     betroot     betroot     beli pepper     cabbage     carect     acarect     acarect     con     coumber     opsiant     garic     ginger		Image_lig     may_lig     may_lig	2 Inage_tigg JHCI inage - L6 MI Mormation Deve Mark Contert 3 Devember 2020 84 60
Ve. Dep	Tags loyment	0	Options							Cancel Open
					Begin upload					

It would be best if you now had your training dataset split into three classes of data:

CDGC IMPULS     CDGC IMPULS     Txining dia                                                              <	<ul> <li>O ata acquisition - ES</li> <li>→ C ∴ a studio.edg</li> </ul>	P32-CAN x + eimpulse.com/studio/76025/acquisition/train	ing?page=1		N Q () () ()
Training data         Training data         Training data         Training data           Databand              •• Training data              •• Concernation               •• Training data              •• Training data              •• Concernation	EDGE IMPULSE	DATA ACQUISITION (1993) CAMPRUITS VS VEGO			🛞 MyRober (Marcelo )
Data capitition incpute design         Distance (LEUTE) 279 items         Distance (LEUTE) 200 items         Distance (LEUTE) 100% / 0% /         Distance (LEUTE) 100% / <thdistance (leute)<br="">100% /         Distance (LEUTE)</thdistance>	Dashboard Devices	Training data Test data Export da Did you know? You can capture dat	data a from any device or development board, or upload your	existing datasets - Show options	
Collected data         Collected data         Res         Res <th>Data acquisition</th> <th>279 items</th> <th>TAAN / TEST SPUT 100% / 0% A</th> <th>Record new data</th> <th>-fir Connect using WebUSI</th>	Data acquisition	279 items	TAAN / TEST SPUT 100% / 0% A	Record new data	-fir Connect using WebUSI
Instruction	Image	Collected data	TBLO	No devices connected to the remote management APL	
LON Tuner         Image, 19 jgr 2 p4e 000         Isama         jan 12 2022, 15 45         I           Betzen model         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I           Live classification         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I           Model testing         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I           Versioning         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I           Deployment         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I           Documentation         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I           Forums         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I           Documentation         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I           Forums         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I         I           Becamentation         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45         I         I           Forums         Image, 61 jgr 2 p4e 010         Isama         jan 12 2022, 15 45 <td>Transfer Learning 0</td> <td>SAMPLE NAME LABEL</td> <td>ADDED LENGTH</td> <td>NAW DATA</td> <td></td>	Transfer Learning 0	SAMPLE NAME LABEL	ADDED LENGTH	NAW DATA	
Retrain model         Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I           Like classification         Image, 88/jg/2p4edfjb         Isania         ji/12/202, 1545         I           Model testing         Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I           Model testing         Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I           Optioner         Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I           Optioner         Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I           Optioner         Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I           Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I         I           Optioner         Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I           Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I         I           Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I         I           Image, 93/jg/2p4edfjb         Isania         ji/12/202, 1545         I         I           Image, 93/jg/2p4edfgb         Isania         ji/12/	EON Tuner	Image_89.jpg.2p4ed0vt banana	jan 12 2022, 15045	image_os.jpg.zp+eduvt	_
Base         Base <th< td=""><td>Retrain model</td><td>image_91.jpg2p4ed1po banana</td><td>jan 12 2022, 15:45: I</td><td></td><td></td></th<>	Retrain model	image_91.jpg2p4ed1po banana	jan 12 2022, 15:45: I		
Model testing         Image, 52/jg2/jefeetid         Isana         jair 122022 (545)         I           Versiong         Image, 50/jg2/jefeetid         Isana         jair 122022 (545)         I           Deploymerc         Image, 50/jg2/jefeetid         Isana         jair 122022 (545)         I           Insert KATHO         Image, 52/jg2/jefeetid         Isana         jair 122022 (545)         I           Documentation         Image, 52/jg2/jefeetid         Isana         jair 122022 (545)         I           Forums         Image, 52/jg2/jefeetid         Isana         jair 122022 (545)         I           Forums         Image, 52/jg2/jefeetid         Isana         jair 122022 (545)         I           Image, 52/jg2/jefeetid         Isana         jair 122022 (545)         I         I           Image, 52/jg2/jefeetid         Isana         jair 12202 (545)         I	Live classification	Image_88.png.2p4ecv5e banana	jan 12 2022, 15:45: I	A CPA	
Wriskning         Image, 100 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I           Opployment         Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I           Insist startho         Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I           Occurrentation         Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I           Occurrentation         Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I           Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I         I           Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I         I           Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I         I           Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I         I           Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I         I           Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I         I           Image, 30 jpg 2.94ectpl         Isaka         Jin 12 2022, 1545         I         I           Image, 30 jpg 2.94ectpl         Isaka	Model testing	Image_92.jpg.2p4ecus5 banana	jan 12 2022, 15/45: I		
Opployment         Image,90/jpg2p4ecme         Isaana         Jan12 2022, 1545         I           Integ startto         Image,97/jpg2p4ecme         Isaana         Jan12 2022, 1545         I           Documentation         Image,97/jpg2p4ecme         Isaana         Jan12 2022, 1545         I           Forums         Image,97/jpg2p4ecme         Isaana         Jan12 2022, 1545         I           Image,97/jpg2p4ecme         Isaana         Jan12 2022, 1545         I         I           Image,96/jpg2p4ecme         Isaana         Jan12 2022, 1545         I         I           Image,96/jpg2p4ecme         Isaana         Jan12 2022, 1545         I         I	Versioning	Image_100.jpg.2p4ectpi banana	Jan 12 2022, 15:45:	20. (CC2.)	
Inst STARTED         Image,872gg2p4erosi         baana         jan 12 002, 15.45         1           Documentation         Image,873gg2p4erosi         baana         jan 12 002, 15.45         1           Forums         Image,87.gg2p4erosi         baana         jan 12 002, 15.45         1           Image,86.gg2p4erosi         baana         jan 12 002, 15.45         1           Image,86.gg2p4erosi         baana         jan 12 002, 15.45         1	Deployment	Image_90.jpg.2p4ecsnc banana	jan 12 2022, 15/45 I		
Documentation         Image, #3 pg-2p4ers46         Isanas         jin 12 2022, 15.45         i           Forums         Image, #3 jg-2p4ers46         Isanas         jin 12 2022, 15.45         I           Image, #3 jg-2p4ers46         Isanas         jin 12 2022, 15.45         I         I           Image, #3 jg-2p4ers46         Isanas         jin 12 2022, 15.45         I         I           Image, #3 jg-2p4ers46         Isanas         jin 12 2022, 15.45         I         I           Image, #3 jg-2p4ers46         Isanas         jin 12 2022, 15.45         I         I           Image, #3 jg-2p4ers46         Isanas         jin 12 2022, 15.45         I         I	TING STARTED	Image 87.jpg.2p4ecra6 banana	Jan 12 2022, 1545		
Forums         Image, #Ajge 2p4ecr6e         banana         jan 12 2022, 15:45         I           Image, #Ajge 2p4ecr6e         banana         jan 12 2022, 15:45         I           Image, #Ajge 2p4ecr6e         banana         jan 12 2022, 15:45         I           Image, #Ajge 2p4ecr6e         banana         jan 12 2022, 15:45         I           Image, #Ajge 2p4ecr6e         banana         jan 12 2022, 15:45         I	Documentation	image 83.prg.2p4ecr56 banana	lan 12 2022, 15:45-		
Image_striggspacework         Damas         Jan 12 2022, 15:45         I           Image_striggspacework         barana         Jan 12 2022, 15:45         I	Forums	Image 84 ing Indeptie	lan 12 2022 16 46		
Image, Mage_aperopring         Exama         Juni 12 2022, 15 45         I           Image, Majge_aperopring         Exama         Juni 12 2022, 15 45         I           Image, Majge_aperopring         Exama         Juni 12 2022, 15 45         I           Image, Majge_aperopring         Exama         Juni 12 2022, 15 45         I		mage_orgpg.chet/file	jan 12 2022, 1202		
Image_86_gg2p4cept         buanu         jun122022_1545         I           Image_86_gg2p4ceptc         buanu         jun122022_1545         I		Image_79.jpg.2p4ecqrq banana	jan 12 2022, 15:45 · I		
Image, 85, jog. 2p4ecept banana jan 12 2022, 15:45		Image_86.jpg.2p4ecqsh barana	Jan 12 2022, 15:45: · 1		
		Image_85.jpg.2p4ecqsc banana	Jan 12 2022, 15x85 1		
			1999999 - 90		

You can upload extra data for further model testing or split the training data. I will leave it as it is to use the most data possible.

### **Impulse Design**

An impulse takes raw data (in this case, images), extracts features (resize pictures), and then uses a learning block to classify new data.

Classifying images is the most common use of deep learning, but much data should be used to accomplish this task. We have around 90 images for each category. Is this number enough? Not at all! We will need thousands of images to "teach or model" to differentiate an apple from a banana. But, we can solve this issue by re-training a previously trained model with thousands of images. We call this technique "Transfer Learning" (TL).



With TL, we can fine-tune a pre-trained image classification model on our data, performing well even with relatively small image datasets (our case).

So, starting from the raw images, we will resize them (96x96) pixels and feed them to our Transfer Learning block:



### **Pre-processing (Feature generation)**

Besides resizing the images, we can change them to Grayscale or keep the actual RGB color depth. Let's start selecting **Grayscale**. Doing that, each one of our data samples will have dimension 9, 216 features (96x96x1). Keeping RGB, this dimension would be three times bigger. Working with Grayscale helps to reduce the amount of final memory needed for inference.

• • • • • • • • • • • • • • • • • • •	CAM-Fruits-vi × + edgeimpulse.com/studio/76025/dsp/mage/20	ଅର୍ଧ 🖈 👹
EDGE IMPULSE	MAGE gara courses visces #1 ← EON Tuner Primary	😭 Mjilebet (Marcelo Rova)
Dashboard	Parameters Generate features	
Devices	Raw data	image_59.jpg.2p4ed0vt (banana) 🔍
Data acquisition		1000
Impulse design		
Create impulse		
Image     Transfer Learning ().	580	
EON Tuner	Raw features	DSP result
Retrain model	\$x624775, \$x65687, \$x686868, \$x741666, \$xeaecta, \$xc2c167, \$x81a123, \$x880721, \$x8abb	image
Live classification		17 7960
Model testing	Parameters	a sur a s
Versioning	Image	
Deployment	Color depth Grayscale v	Processed features
TING STARTED		#.7586, #.7652, #.8732, #.9512, #.9008, #.7508, #.5862, #.6817, #.6369, #.6363, #.6626
Documentation	Save parameters	
Forums		On-device performance ③
		PROCESSING TIME     PRAK RAM USAGE     4 ms.

Do not forget to [Save parameters]." This will generate the features to be used in training.

### Training (Transfer Learning & Data Augmentation)

In 2007, Google introduced <u>MobileNetV1</u>, a family of general-purpose computer vision neural networks designed with mobile devices in mind to support classification, detection, and more. MobileNets are small, low-latency, low-power models parameterized to meet the resource constraints of various use cases.

Although the base MobileNet architecture is already tiny and has low latency, many times, a specific use case or application may require the model to be smaller and faster. MobileNet introduces a straightforward parameter  $\alpha$  (alpha) called width multiplier to construct these smaller, less computationally expensive models. The role of the width multiplier  $\alpha$  is to thin a network uniformly at each layer.

Edge Impulse Studio has available MobileNet V1 (96x96 images) and V2 (96x96 and 160x160 images), with several different  $\alpha$  values (from 0.05 to 1.0). For example, you will get the highest accuracy with V2, 160x160 images, and  $\alpha$ =1.0. Of course, there is a trade-off. The higher the accuracy, the more memory (around 1.3M RAM and 2.6M ROM) will be needed to run the model, implying more latency.

The smaller footprint will be obtained at another extreme with **MobileNet V1** and  $\alpha$ =0.10 (around 53.2K RAM and 101K ROM).

When we first published this project to be running on an ESP32-CAM, we stayed at the lower side of possibilities, which guaranteed the inference with small latency but not with high accuracy. For this first pass, we will keep this model design (**MobileNet V1** and  $\alpha$ =0.10).

Another necessary technique to use with deep learning is **data augmentation**. Data augmentation is a method that can help improve the accuracy of machine learning models, creating additional artificial data. A data augmentation system makes small, random changes to your training data during the training process (such as flipping, cropping, or rotating the images).

Under the rood, here you can see how Edge Impulse implements a data Augmentation policy on your data:

```
Implements the data augmentation policy
def augment_image(image, label):
 # Flips the image randomly
 image = tf.image.random_flip_left_right(image)
 # Increase the image size, then randomly crop it down to
 # the original dimensions
 resize_factor = random.uniform(1, 1.2)
 new_height = math.floor(resize_factor * INPUT_SHAPE[0])
 new_width = math.floor(resize_factor * INPUT_SHAPE[1])
 image = tf.image.resize_with_crop_or_pad(image, new_height, new_width)
 image = tf.image.random_crop(image, size=INPUT_SHAPE)
 # Vary the brightness of the image
 image = tf.image.random_brightness(image, max_delta=0.2)
 return image, label
```

Exposure to these variations during training can help prevent your model from taking shortcuts by "memorizing" superficial clues in your training data, meaning it may better reflect the deep

underlying patterns in your dataset.

The final layer of our model will have 16 neurons with a 10% dropout for overfitting prevention. Here is the Training output:

Cobord Neural Network settings 1 Taking output   Coross Taking output Indiring output Indiring output   Coross Taking output Indiring output Indiring output   Coross Number of laving option 0: 20 Indiring output   Indiring output Number of laving option 0: 20 Indiring output   Indiring output Number of laving option 0: 20 Indiring output   Indiring output Number of laving option 0: 20 Indiring output   Indiring output Number of laving option 0: 20 Indiring output   Indiring output Number of laving option 0: 20 Indiring output   Indiring output Number of laving output 20 Indiring output   Indiring output Number of laving output 20 Indiring output   Indiring output Number of laving output 20 Indiring output   Indiring output Indiring output Indiring output Indiring output   I	EDGE IMPULSE	TRANSPER LEARNING (MAGES) (SPAS CAMPIUM VS VIO #1 * EON Tuner Primary						🛞 Mjitoliot (Marcelo Ro
Encisis Faining setting:   Encisis Faining setting:   Encisis Instruction of grading opting if	Dushboard	Neural Network settings		1	Training output			
Bristandion   Implied eigin:   Implied	Devices	Training settings						
<ul> <li>Learning size <sup>1</sup>/<sub>2</sub> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup> <sup>1</sup></li></ul>	Data acquisition Impulse design	Number of training cycles (3)	20		Model		M	odel version: @ Quantized (inst) +
<ul> <li>Ingit</li> <li>Ingit</li> <li>Standard Lake and State a</li></ul>	Create impulse	Learning rate ③	0.0005		Last training performance wilder	See and		
<ul> <li>Insufar Lanning L.</li> <li>Kots beinger dataset ©</li> <li>Cots agementation ©</li> <li>Park Lanning L.</li> <li>Cots agementation ©</li> <li>Cots agem</li></ul>	<ul> <li>Image</li> </ul>	Validation set size ③	20		76.8%		0.68	
EXT for     Data ageneration (b)     Data (b) <td><ul> <li>Transfer Learning (L.</li> </ul></td> <td>Auto-balance dataset @</td> <td></td> <td></td> <td>Confusion matrix pulsation set</td> <td></td> <td></td> <td></td>	<ul> <li>Transfer Learning (L.</li> </ul>	Auto-balance dataset @			Confusion matrix pulsation set			
Retron model     Vers aglemention (%)     In (%) <td>EON Turner</td> <td>Descent and the D</td> <td>_</td> <td></td> <td></td> <td>APPLE</td> <td>BARANA</td> <td>POTATO</td>	EON Turner	Descent and the D	_			APPLE	BARANA	POTATO
Live dashifedan Media herback architecture Media herback architecture	Retrain model	Used augmentation (5)	<b>M</b>		APPLE BARRANA	6.76	104	428
Model testing     Number of the service	Live classification	Neural network architecture			POTATO P1 LCOME	2.66	1434	44,3%
Versioning     Name       Deployment       Instructions       Documentations       Formins       Output layer () desard       Deployment       Statt training       Output layer () desard       Statt training       Output layer () desard       Statt training       Output layer () desard	Model testing			_	factors perference of the			
Deployment     Image: set of the set of	Versioning		ut layer (0,214 features)		reasone explorer for range of g			
The STARTED Documentation Faruins Documentation Faruins Documentation Faruins Documentation Faruins Documentation Faruins Documentation Occurrent Documentation Documentation Occurrent Documentation Documentation Occurrent Documentation Docu	Deployment		E.		apple - correct     banana - correct     potata - correct     apple - incorrect	1.4	2.	
Decommentation Favores Forums Choose a different model Choose a differe	TING STARTED	MobileNet/1 96x96	0.1 (final layer: 16 neurons, 0.1 dropout)		<ul> <li>potato - incorrect</li> </ul>	1.1.1	1.00	
Pours	Documentation	01	oose a different model			1.11	delle.	ī
Output layer () downed)	Forums					3	1	1
Scart Graning On device performance ()		0	utput layer (Il classes)			- The address of the second se	2. 2. 1	1
			Start training		On-device performance ①			

The result could be better. The model reached around 77% accuracy, but the amount of RAM expected to be used during the inference is relatively tiny (about 60 KBytes), which is very good.

### Deployment

The trained model will be deployed as a .zip Arduino library:

EDGE IMPULSE					
EDGE IMPOLSE	Run your impulse directly			Build output	
	Bun this impulse directly on your mo	oblie phone or computer, i	is app required.		
Dashooard				bit started	
Devices				Copying Dige Impulse SDK Copying Dige Impulse SDK	
Data acquisition	Mobile shore			Campilling FON andel	
impulse design				Campiling DON model DK	
Create impulse				Removing Clutter and updating h Removing Clutter and updating h	eaders (K
• Imare	Select optimizations (optional)	-		Security Splatters	
	Model optimizations can increase or choices for your target. Or, but click	n device performa-		hive GK	
<ul> <li>transfer Learning D</li> </ul>	courses for your target. Or, just tark	to and the use one to		1	
EON Turker	Enable EON** Compile	r % ins memory O	$\sim$		
Retrain model	•				
Live classification	Available optimizations for Tran	nsfer Learning (In	Built Arduino libra	y	
Model testing	Quantized (int8)	RAM USAGE	Add this library through the Arduin	DE via:	
Versioning	Currently selected	60.2%	Sketch > Include Library > Add .3	P Library	
Cardo marci		109.7K			
Deproyment	Harrison differentiation		File > Examples > ESP32-CAR-Fruits-vs-	der: eggles Laferencing	
ANS STARTED	Unoptimized (noacsz)	131.3K			
Documentation	Conce for second				
		199.5K			
Forums					
			Read of the second s		

Open your Arduino IDE, and under **Sketch**, go to **Include Library** and **add.ZIP Library**. Please select the file you download from Edge Impulse Studio, and that's it!

Name     Date Modified       Image: State	Name	
et-xiao-esp32s3-cam-fruits-vs-veggies-arduino-1.0 Thursday, May 4, 2023 10:57 AM      et-xiao-esp32s3-cam-fruits-vs-veggies-arduino-1.0 Thursday, May 4, 2023 8:16 AM      model and the state of the sta		Date Modified
2.023Sr(TheyML-JCTP.off     Thursday, May 4, 2023 8,229 AM       BAC, 0948, HEIC     Thursday, May 4, 2023 8,216 AM       I el-xiao_esp3233_mug_or_not_mug-arduino-1.0.12.zip     Wednesday, May 3, 2023 8,216 AM       Y XLO, 25P32S3_Sense_Prestrict     Monday, May 1, 2023 8,216 AM       X Xao-tiltek.HEIC     Monday, May 1, 2023 4,312 PM       Wolo-terminal-el-1.4.0.uf2     Monday, May 1, 2023 8,220 AM       S Xao-tiltek.HEIC     Monday, May 1, 2023 8,220 AM       Proyects Machine Learning aplicasta al rubro Automotion     Friday, April 28, 2023 2,56 PM       BMC_5712_HEIC     Friday, April 28, 2023 9,010 AM       Prosycts Machine Learning aplicasta al rubro Automotion     Friday, April 28, 2023 9,023 AM       2_VM0_Terminal_installation-3.pdf     Thursday, April 27, 2023 2,55 PM	ei-xiao-esp32s3-cam-fruits-vs-veggies-arduino-1.0	. Thursday, May 4, 2023 10:57 AM
	2023-SciTinyML-ICTP.pdf	Thursday, May 4, 2023 8:29 AM
	IMG_0948.HEIC	Thursday, May 4, 2023 8.21 Joh Thursday, May 4, 2023 8:16 AM
Dav4-Halleluvah_Aworinde-BOWEN.mov Thursday, April 20, 2023 7:43 AM		
	Dav4-Halleluvah_Aworinde-BOWEN.mov	

Under the **Examples** tab on Arduino IDE, you should find a sketch code under your project name.



Open the Static Buffer example:

• •	static_buffer   Arduino 1.8.19	
		2
static_buffer		
15 */		
16		
17/* Includes	*/	/
18 #include <xiac< td=""><td>-ESP32S3-CAM-Fruits-vs-Veggies_inferencing.h&gt;</td><td></td></xiac<>	-ESP32S3-CAM-Fruits-vs-Veggies_inferencing.h>	
19		
20 static const f	<pre>loat features[] = {</pre>	
21 // copy ro	w features here (for example from the 'Live classification' page)	)
22 // see <u>htt</u>	ps://docs.edgeimpulse.com/docs/running-your-impulse-arduino	
23};		
24		
25 /**		
26 * @brief	Copy raw feature data in out_ptr	
27 *	Function called by inference library	
28 *		
29 * @param[in]	offset The offset	
30 * @param[in]	length The length	
31 * @param	out_ptr The out pointer	
32 *		
33 * @return	0	
Core 1. Core 1. Hardware CDC and ITA	5. Enabled, Disabled, Disabled, UARTO / Hardware CDC, Default with splifs (3MB APP/1, 5MB SPIFFS), 240MHz (WIFI), 921600, None, Disabled on /dev/cu.usbmode	m110

You can see that the first line of code is exactly the calling of a library with all the necessary stuff for running inference on your device.

### #include <XIAO-ESP32S3-CAM-Fruits-vs-Veggies\_inferencing.h>

Of course, this is a generic code (a "template") that only gets one sample of raw data (stored on the variable: features = {} and runs the classifier, doing the inference. The result is shown on the Serial Monitor.

We should get the sample (image) from the camera and pre-process it (resizing to 96x96, converting to grayscale, and flatting it). This will be the input tensor of our model. The output tensor will be a vector with three values (labels), showing the probabilities of each one of the classes.



Returning to your project (Tab Image), copy one of the Raw Data Sample:



9, 216 features will be copied to the clipboard. This is the input tensor (a flattened image of 96x96x1), in this case, bananas. Past this Input tensor on features[] = {0xb2d77b, 0xb5d687, 0xd8e8c0, 0xeaecba, 0xc2cf67, ...}

🛛 🗧 static_buffer   Arduino 1.8.19
static_buffer §
16
17 /* Includes */
18 <pre>#include <xia0-esp32s3-cam-fruits-vs-veggies_inferencing.h></xia0-esp32s3-cam-fruits-vs-veggies_inferencing.h></pre>
19
20 static const float features[] = {
21 0xb2d77b, 0xb5d687, 0xd8e8c0, 0xf4f6dd, 0xeaecba, 0xc2cf67, 0x8faf23, 0x88b72f
22 };
23
24 /**
or + Ohaist Common Continue data in ant ala
K82, Core 1, Core 1, Hardware CDC and /TAG, Enabled, Disabled, Disabled, UARTO / Hardware CDC, Default with spiffs GMB APP/LSMB SPIFFS, 240MHz (WiFil, 921600, None, Disabled on /dev/cu unberodem101

Edge Impulse included the <u>library ESP NN</u> in its SDK, which contains optimized NN (Neural Network) functions for various Espressif chips, including the ESP32S3 (running at Arduino IDE).

When running the inference, you should get the highest score for "banana."

•••	/dev/cu.usb	modem1101		
				Send
Edge Impulse stand	alone inferencing	(Arduino)		0
run_classifier ret	urned: 0			
Timing: DSP 4 ms,	inference 317 ms,	anomaly Ø	ms	
Predictions:				
apple: 0.16406				
banana: 0.73047				
potato: 0.10547				
Edge Impulse stand	alone inferencing	(Arduino)		
run_classifier ret	urned: 0			
Timing: DSP 4 ms,	inference 317 ms,	anomaly Ø	ms	
Predictions:				
apple: 0.16406				
banana: 0.73047				
potato: 0.10547				
Edge Impulse stand	alone inferencing	(Arduino)		
Autoscroll Show timesta	np	Both NL & CR 🛛 📀	115200 baud	Clear output

Great news! Our device handles an inference, discovering that the input image is a banana. Also, note that the inference time was around 317ms, resulting in a maximum of 3 fps if you tried to classify images from a video. It is a better result than the ESP32 CAM (525ms of latency).

Now, we should incorporate the camera and classify images in real time.

Go to the Arduino IDE Examples and download from your project the sketch esp32\_camera:

U8g2	>			
VL53L1X	,	(Fr.	- 3	
WALC-2022-Image-Classification_inferencing	>	esp32	>	esp32_camera
XIAO-ESP32S3-CAM-Fruits-vs-Veggies_inferencing	>	nano_ble33_sense	>	esp32_fusion
XIAO_BLE_SenseKeyWord_Spotting_inferencing	>	nicla_sense	>	esp32_microphone
XIAO_BLE_SenseMotion_Classification_inferencing	>	nicla_vision	>	esp32_microphone_continuous
XIAO_BLE_SenseSound_Classification_KWSinferencing	>	portenta_h7	>	
XIAO_ESP32S3_mug_or_not_mug_inferencing	>	rp2040	>	
INCOMPATIBLE	>	static_buffer	>	

You should change lines 32 to 75, which define the camera model and pins, using the data related to our model. Copy and paste the below lines, replacing the lines 32-75:

#define	PWDN_GPI0_NUM	-1	<pre>#define Y6_GPI0_NUM</pre>	14
#define	RESET_GPI0_NUM	-1	<pre>#define Y5_GPI0_NUM</pre>	16
#define	XCLK_GPI0_NUM	10	<pre>#define Y4_GPI0_NUM</pre>	18
#define	SIOD_GPIO_NUM	40	<pre>#define Y3_GPI0_NUM</pre>	17
#define	SIOC_GPIO_NUM	39	<pre>#define Y2_GPI0_NUM</pre>	15
#define	Y9_GPI0_NUM	48	<pre>#define VSYNC_GPI0_NUM</pre>	38
#define	Y8_GPI0_NUM	11	<pre>#define HREF_GPI0_NUM</pre>	47
#define	Y7_GPI0_NUM	12	<pre>#define PCLK_GPI0_NUM</pre>	13

Here you can see the resulting code:

•••	esp32_camera   Arouno 1.6.19
esp32_camera §	
23/* includes	*/
24 #include <xiao-esp32s3-0< td=""><td>CAM-Fruits-vs-Veggies_inferencing.h&gt;</td></xiao-esp32s3-0<>	CAM-Fruits-vs-Veggies_inferencing.h>
25 #include "edge-impulse-	sdk/dsp/image/image.hpp"
26	
27#include "esp_camera.h"	
28 20 // Salast semana model	find more compute models in compute size h file house
29// Select camera model -	<ul> <li>Tina more camera models in camera_pins.n tile nere</li> </ul>
3077 <u>https://github.com/e</u>	spressit/arauino-esp52/blob/master/libraries/ESP52/examples/camero
32 #define CAMERA MODEL XTA	AD ESP3253 // Has PSRAM
33	
34 #define PWDN_GPI0_NUM	-1
35 #define RESET_GPIO_NUM	-1
36 #define XCLK_GPI0_NUM	10
37 #define SIOD_GPIO_NUM	40
38 #define SIOC_GPIO_NUM	39
39	
40 #define Y9_GPI0_NUM	48
41 #define Y8_GPI0_NUM	11
42 #define Y7_GPI0_NUM	12
43 #define Y6_GPI0_NUM	14
44 #define Y5_GPI0_NUM	16
45 #define Y4_GPI0_NUM	18
46 #define Y3_GPI0_NUM	17
42 #define VSVNC CDTO NUM	15
49 #define HREE CPTO NIM	30 47
50 #define PCLK GPIO NIM	13
51	
52 #define LED_GPIO_NUM	21

The modified sketch can be downloaded from GitHub: <u>xiao\_esp32s3\_camera</u>.

Note that you can optionally keep the pins as a .h file as we did in previous sections.

Upload the code to your XIAO ESP32S3 Sense, and you should be OK to start classifying your fruits and vegetables! You can check the result on Serial Monitor.

# 4.4.11 Testing the Model (Inference)

Getting a photo with the camera, the classification result will appear on the Serial Monitor:



•••	/dev/cu.usbmodem1101	
	Ser	nd
banana: 0.90234		
potato: 0.03906		
Predictions (DSP: 4	ms., Classification: 318 ms., Anomaly: 0 ms.):	
apple: 0.03906		
banana: 0.93359		
potato: 0.02734		
Predictions (DSP: 4	ms., Classification: 317 ms., Anomaly: 0 ms.):	
apple: 0.05469		
banana: 0.90625		
potato: 0.03906		
Predictions (DSP: 4	<pre>ms., Classification: 318 ms., Anomaly: 0 ms.):</pre>	
apple: 0.04297		
banana: 0.92578		
potato: 0.03125		
Autoscroll Show timestamp	Both NL & CR 😌 115200 baud 😌 Clear outp	out

Other tests:





# 4.4.12 Testing with a Bigger Model

Now, let's go to the other side of the model size. Let's select a MobilinetV2 96x96 0.35, having as input RGB images.

Neural Network settings		1	Model		Model version:	Quantized (int8) •
Training settings			Last training perform	ance (validation set)		
Number of training cycles ①	20		% ACCURACY 71.4%		0.77	
Learning rate ③	0.0005					
Data augmentation (9)	0		Confusion matrix (value	lation set)		
	-			APPLE	BANANA	POTATO
Advanced training settings			APPLE	#1.8%	9.1%	9.1%
			BANANA	9.7%	63.6%	27.3%
Validation set size ②	10	%	FI SCORE	0.78	0.74	057
Split train/validation set on metadata key @						
			Data explorer (full traini	ng set) (D		
Auto-balance dataset ②			10 March 10			
Profile int8 model (9)			<ul> <li>apple - correct</li> <li>banana - correct</li> </ul>			
	-		potato - correct			
Neural network architecture			<ul> <li>banana - incorrect</li> </ul>		2	
			potato - incorrect			
Input layer (27,64	8 features)					
					•	
				· · · · · · · · · · · · · · · · · · ·	A	
[14				100 1	A garage	3.8 .
MobileNetV2 96x96 0.35 (final laye	er: 16 neurons, 0.1 dropout)					
Choose a differe	ent model		On-device performant	ce (D)		
			INFERENCES OF			ELASH LISAGE
			( 2.481 ms.	- 33	3.8K	580.0K

Even with a bigger model, the accuracy could be better, and the amount of memory necessary to run the model increases five times, with latency increasing seven times.

Note that the performance here is estimated with a smaller device, the ESP-EYE. The actual inference with the ESP32S3 should be better.

To improve our model, we will need to train more images.

Even though our model did not improve accuracy, let's test whether the XIAO can handle such a bigger model. We will do a simple inference test with the Static Buffer sketch.

Let's redeploy the model. If the EON Compiler is enabled when you generate the library, the total memory needed for inference should be reduced, but it does not influence accuracy.



Doing an inference with MobilinetV2 96x96 0.35, having as input RGB images, the latency was 219ms, which is great for such a bigger model.



For the test, I trained the model again, using the smallest version of MobileNet V2, with an alpha of 0.05. Interesting that the result in accuracy was higher.

		· · · ·	and the second se	(	
Training settings			Training output		3.101 +
Number of training cycles (8)	20		and the second second second second		
Learning rate ③	0.0005		Model	54	odel version: @ Quantized (with) +
Data augmentation (2)			Last training performance (wildow)	un sel)	
Advanced training settings			80.4%	0.46	
Validation set size ()	20	5	Confusion matrix substation (44)		
Split train/validation set on metadata key @				ATTLE BARBARA	FOTATO
Auto-balance dataset (I)			APPLE BANANA	84.0% 5.3% 22.7% 54.5%	21.7%
			Potato	16 16	1855
Neural network architecture	layer (77,148 features)	_	Data explorer (ul rearing set) () apple-correct basana_correct potato_correct		26-
MobileNetX2 56x50 0	05 (Final layer: & neurons, 0.1 dropout)		Expanse - HOOT RE     POSING - HOOT RE	C/13	*
Che	sse a different model				
0vi	put layer (3 classes)		On-device performance @		
			INTERENCING TIME	PEAK RAM USAGE	TLASH USAGE

Note that the estimated latency for an Arduino Portenta (ou Nicla), running with a clock of 480MHz is 45ms.

Deploying the model, I got an inference of only 135ms, remembering that the XIAO runs with half of the clock used by the Portenta/Nicla (240MHz):

		/dev/cu.usbmo	odem1101		
					Send
10:44:47.849 ->	banana: 0.01953				
10:44:47.849 ->	potato: 0.12891				
10:44:48.103 -> P	redictions (DSP: 3 ms	., Classification:	135 ms.,	Anomaly: 0 ms.):	
10:44:48.103 ->	apple: 0.86328				
10:44:48.103 ->	banana: 0.03906				
10:44:48.103 ->	potato: 0.10156				
10:44:48.356 -> F	redictions (DSP: 3 ms	., Classification:	135 ms.,	Anomaly: 0 ms.):	
10:44:48.356 ->	apple: 0.90234				
10:44:48.356 ->	banana: 0.02344				
10:44:48.356 ->	potato: 0.07422				
10:44:48.612 -> F	redictions (DSP: 3 ms	., Classification:	135 ms.,	Anomaly: 0 ms.):	
10:44:48.612 ->	apple: 0.91797				
10:44:48.612 ->	banana: 0.02344				
10:44:48.612 ->	potato: 0.05859				
10:44:48.861 -> F	redictions (DSP: 3 ms	., Classification:	135 ms.,	Anomaly: 0 ms.):	
10:44:48.861 ->	apple: 0.88281				
10:44:48.861 ->	banana: 0.03516				
10:44:48.861 ->	potato: 0.08203				
10:44:49.114 -> F	redictions (DSP: 3 ms	., Classification:	135 ms.,	Anomaly: 0 ms.):	
## 4.4.13 Running inference on the SenseCraft-Web-Toolkit

One significant limitation of viewing inference on Arduino IDE is that we can not see what the camera focuses on. A good alternative is the **SenseCraft-Web-Toolkit**, a visual model deployment tool provided by <u>SSCMA</u>(Seeed SenseCraft Model Assistant). This tool allows you to deploy models to various platforms easily through simple operations. The tool offers a user-friendly interface and does not require any coding.

Follow the following steps to start the SenseCraft-Web-Toolkit:

- 1. Open the <u>SenseCraft-Web-Toolkit website</u>.
- 2. Connect the XIAO to your computer:
- Having the XIAO connected, select it as below:

> Ø ⋒ = N0	ps://seeed-studio.github.lo/SenseCraft-Web-Toolkit/#/setup/process		* 0 0 ¢
SenseCraft		? % *	Correct NAO ESP3253 A
Setup ^	Device	Preview Settings	Grove Vision Al(
Process	Please connect the device to your PC	Confidence (9)	
Outred	Ready to use Al models	rod	
Tool	Please select a preset AI model or upload a custom AI model	INU (B)	
		•	
	Describertion	Proview •	
	Gettare Detection		
	United Control (1) Redail		

• Select the device/Port and press [Connect]:

- → ຕ ຄ ⊖ SenseCraft	d-studio	ed-studio github.io/SenseCra nithub.io.wants.to.connec	t to a serial r	a/setup/process			?	s. e	0	XIAO ESP3253	Ð	Connect
Setup     Process     Configuration	US8 JTAG/ve	rial debug unit (cu.usbmodem101)	- Paired			Preview Settings						
Output Ø Tool			4	model	Sens	60 O						
	•	Care person Detection	Correct P	erson Classification	Face Detection	Preview						Invoka
		esture Detection		Apple Detection	Contraction Contraction							
	1			- 1 r - 1								

You can try several Computer Vision models previously uploaded by Seeed Studio. Try them and have fun!

In our case, we will use the blue button at the bottom of the page: [Upload Custom AI Model].

But first, we must download from Edge Impulse Studio our **quantized .tflite** model.

- 3. Go to your project at Edge Impulse Studio, or clone this one:
- XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN
- 4. On the Dashboard, download the model ("block output"): Transfer learning model TensorFlow Lite (int8 quantized).

→ Ơ ଲ ≒ https://stu	dio.edgeimpulse.com/studio/2285	16			x 5 0 0
	Download block outpu	it			
EDGE IMPOLSE	TITLE	TYPE	SIZE		Launch in browser
Dashboard	Image training data	NPY file	279 windows	в	
Devices	Image training labels	NPY file	279 windows	в	Collaborators (1/4) 💿 🚨
<ul> <li>Impulse design</li> </ul>	Image testing data	NPY file	15 windows	в	MjRoBot (Marcelo Rovai)
Create impulse	Image testing labels	NPY file	15 windows	ь	Summary
Transfer learning	Transfer learning model	TensorFlow Lite (float32)	245 KB	в	DEVICES CONNECTED
EON Tuner	Transfer learning model	TensorFlow Lite (int8 quantized)	171 KB	•	•
Retrain model     Live classification	Transfer learning model	TensorFlow SavedModel	314 KB	D	DATA COLLECTED 294 items
Model testing	Transfer learning model	Keras h5 model	248 KB	в	6
Versioning					Project info

5. On SenseCraft-Web-Toolkit, use the blue button at the bottom of the page: [Upload Custom AI Model]. A window will pop up. Enter the Model file that you downloaded to your computer from Edge Impulse Studio, choose a Model Name, and enter with labels (ID: Object):



Note that you should use the labels trained on El Studio, entering them in alphabetic order (in our case: apple, banana, potato).

After a few seconds (or minutes), the model will be uploaded to your device, and the camera image will appear in real-time on the Preview Sector:



The Classification result will be at the top of the image. You can also select the Confidence of your inference cursor Confidence.

Clicking on the top button (Device Log), you can open a Serial Monitor to follow the inference, the same that we have done with the Arduino IDE:

9	SenseCraft			? 🐐 🕷 👩 😳 XIAO ESP3253 🗸 Disconnect
	Setup	^	Logger Confidence (	•
	Process	1	classes: [[77,6]] perf: ("proprocess":3, "inference":106, "postprocess":1)	
	Configuration		classes: [[91,0]] perf: ("preprocess":4,"inference":106,"postprocess":0) classes: [f81.0]]	
	Output	н	perf: ("preprocess":4, "inference":106, "postprocess":0) classes: [[01,0]]	0 8
	Tool	н	perf: ("preprocess":4, "inference":106, "postprocess":0) classes: [[78,0]] perf: ("preprocess":4, "inference":106, "mostprocess":0)	
		н	<pre>classes ([82,0]) (perf: ("preprocess":3,"inference":107,"postprocess":0)</pre>	
		н	classes: [[85,0]] perf: ("preprocess"13,"inference":107,"postprocess":0) classes: [156,0]]	apple: 89
		н	classes (7s(0)) classes (7s(0))	
		н	<pre>perf: ("preprocess")3,"inference")107,"postprocess")0) classes: [[00,0]]</pre>	and the second second
		н	<pre>perit ( preprocess 13, interesce 110, postprocess 10) perft ( "preprocess 13, "inference":107, "postprocess":0)</pre>	
		ш	classes: [[06,0]] perfi ("preprocess"13,"inference"106, "postprocess"11)	
		ш	classes: [[03,9]] perf: ("preprocess":4,"inference":106,"postprocess":0) classes: [[87,9]]	
		1	perf: ("preprocess":4,"inference":106,"postprocess":0) classes: [[89,0]]	
			Gesture Detection Apple Detection Strawberry Detection	

On Device Log, you will get information as:



- Preprocess time (image capture and Crop): 4ms;
- Inference time (model latency): 106ms,
- Postprocess time (display of the image and inclusion of data): 0ms.
- Output tensor (classes), for example: [[89,0]]; where 0 is Apple (and 1is banana and 2 is potato)

Here are other screenshots:



#### 4.4.14 Conclusion

The XIAO ESP32S3 Sense is very flexible, inexpensive, and easy to program. The project proves the potential of TinyML. Memory is not an issue; the device can handle many post-processing tasks, including communication.

You will find the last version of the codes on the GitHub repository: <u>XIAO-ESP32S3-Sense</u>.

# 4.5 Object Detection

This section will cover other critical computer vision applications, such as object detection using the XIAO ESP32S3 Sense, Edge Impulse Studio, and Arduino IDE.

# 4.5.1 Things used in this project

#### Hardware components

• <u>Seeed Studio Seeed XIAO ESP32S3 Sense</u> × 1





#### Software apps and online services



- Arduino IDE
- Edge Impulse Studio

## 4.5.2 Introduction

In the last section regarding Computer Vision (CV) and the XIAO ESP32S3, Image Classification, we learned how to set up and classify images with this remarkable development board. Continuing our CV journey, we will explore **Object Detection** on microcontrollers.

## **Object Detection versus Image Classification**

The main task with Image Classification models is to identify the most probable object category present on an image, for example, to classify between a cat or a dog, dominant "objects" in an image:



Cat: 70%

Dog: 80%

But what happens if there is no dominant category in the image?



An image classification model identifies the above image utterly wrong as an "ashcan," possibly due to the color tonalities.

The model used in the previous example is the MobileNet, trained with a large dataset, the ImageNet, running on a Raspberry Pi.

To solve this issue, we need another type of model, where not only **multiple categories** (or labels) can be found but also **where** the objects are located on a given image.

As we can imagine, such models are much more complicated and bigger, for example, the **MobileNetV2 SSD FPN-Lite 320x320, trained with the COCO dataset**. This pre-trained object detection model is designed to locate up to 10 objects within an image, outputting a bounding box for each object detected. The below image is the result of such a model running on a Raspberry Pi:



Those models used for object detection (such as the MobileNet SSD or YOLO) usually have several MB in size, which is OK for use with Raspberry Pi but unsuitable for use with embedded devices, where the RAM usually is lower than 1M Bytes or at least a few MB as in the case of the XIAO ESP32S3.

#### An Innovative Solution for Object Detection: FOMO

Edge Impulse launched in 2022, **FOMO** (Faster Objects, More Objects), a novel solution to perform object detection on embedded devices, such as the Nicla Vision and Portenta (Cortex M7), on Cortex M4F CPUs (Arduino Nano33 and OpenMV M4 series) as well the Espressif ESP32 devices (ESP-CAM, ESP-EYE and XIAO ESP32S3 Sense).

In this Hands-On project, we will explore Object Detection using FOMO.

To understand more about FOMO, you can go into the <u>official FOMO announcement</u> by Edge Impulse, where Louis Moreau and Mat Kelcey explain in detail how it works.

## The Object Detection Project Goal

All Machine Learning projects need to start with a detailed goal. Let's assume we are in an industrial or rural facility and must sort and count **oranges (fruits)** and particular **frogs (bugs)**.

In other words, we should perform a multi-label classification, where each image can have three classes:

- Background (No objects)
- Fruit
- Bug

Here are some not labeled image samples that we should use to detect the objects (fruits and bugs):





We are interested in which object is in the image, its location (centroid), and how many we can find on it. The object's size is not detected with FOMO, as with MobileNet SSD or YOLO, where the Bounding Box is one of the model outputs.

We will develop the project using the XIAO ESP32S3 for image capture and model inference. The ML project will be developed using the Edge Impulse Studio. But before starting the object detection project in the Studio, let's create a raw dataset (not labeled) with images that contain the objects to be detected.

#### **Data Collection**

You can use the XIAO, your phone, or other devices for the image capture. Here, we will use the XIAO with a code in the ESP32 library.

#### **Collecting Dataset with the XIAO ESP32S3**

Open the Arduino IDE and select the XIAO\_ESP32S3 board (and the port where it is connected). On File > Examples > ESP32 > Camera, select CameraWebServer.

On the BOARDS MANAGER panel, confirm that you have installed the latest "stable" package.

#### - Attention -

Alpha versions (for example, 3.x-alpha) do not work correctly with the XIAO and Edge Impulse. Use the last stable version (for example, 2.0.11) instead.

You also should comment on all cameras' models, except the XIAO model pins:

#define CAMERA\_MODEL\_XIA0\_ESP32S3 // Has PSRAM

And on Tools, enable the PSRAM. Enter your wifi credentials and upload the code to the device:



If the code is executed correctly, you should see the address on the Serial Monitor:



Copy the address on your browser and wait for the page to be uploaded. Select the camera resolution (for example, QVGA) and select **[START STREAM]**. Wait for a few seconds/minutes, depending on your connection. You can save an image on your computer download area using the [Save] button.



Edge impulse suggests that the objects should be of similar size and not overlapping for better performance. This is OK in an industrial facility, where the camera should be fixed, keeping the same distance from the objects to be detected. Despite that, we will also try using mixed sizes and positions to see the result.

We do not need to create separate folders for our images because each contains multiple labels.

We suggest around 50 images mixing the objects and varying the number of each appearing on the scene. Try to capture different angles, backgrounds, and light conditions.

The stored images use a QVGA frame size 320x240 and RGB565 (color pixel format).

After capturing your dataset, [Stop Stream] and move your images to a folder.

#### **Edge Impulse Studio**

#### Setup the project

Go to <u>Edge Impulse Studio</u>, enter your credentials at **Login** (or create an account), and start a new project.



*Here, you can clone the project developed for this hands-on: <u>XIAO-ESP32S3-Sense-Object</u> <u>Detection</u>* 

On your Project Dashboard, go down and on **Project info** and select **Bounding boxes (object detection)** and **Espressif ESP-EYE** (most similar to our board) as your Target Device:

<ul> <li>XIAO-ESP3253-Sen</li> </ul>	se-Objec x +				•
∈ → ຕ ඛ 😫 studio.	edgeimpulse.com/studio/315759			@ ☆	5 ± O @ :
n EDGE IMPULSE	Not sure where to start? Follow a tu	torial to build your first model in just	minutest		and the second second
Dashboard		×	ефн	DEVICES	CONNECTED
<ul> <li>Devices</li> <li>Data acquisition</li> </ul>	Motion: Gesture recognition	Images: Object detection	Audio: Audio classification	0	
<ul> <li>Impulse design</li> <li>Create impulse</li> </ul>	About this project		Add README	- DATA CO	ULECTED
<ul> <li>EON Tuner</li> <li>Retrain model</li> </ul>	Download block output			Project info	
Live classification     Model testing		No downloads available yet		Project ID Labeling method	One label per data item
<ul> <li>Versioning</li> <li>Deployment</li> </ul>	Performance settings		•	Target device	Espressif ESP-EY1 V
GETTING STARTED	Use GPU for training				
Documentation     Forums	Enterprise performance				_
	Job limit in minutes	20			
	Train job memory (MB) 🕐	8192			

#### Uploading the unlabeled data

On Studio, go to the **Data acquisition tab**, and on the **UPLOAD DATA** section, upload files captured as a folder from your computer.



You can leave for the Studio to split your data automatically between Train and Test or do it manually. We will upload all of them as training.

EDGE IMPULSE		MJRoBot (Marcelo Rovai) / XIAO-ESP	3253-Sense-Object_Detection	6
Dashboard	Dataset Data sources   Lab	eling queue (47)		
Devices	DATA COLLECTED 47 items	TRAIN / TEST SPLIT	Collect data	0 ×
Data acquisition			Connect a device to start building your dataset.	
impuse oca§n	Dataset	1. <b>4</b> B		
<ul> <li>Create impulse</li> <li>EON Tuner</li> </ul>	Training (47) Test (0)	T 🛛 C	RAW DATA 20231128151645	
Retrain model	SAMPLE NAME LABELS	ADDED LENGTH		
	20231128151645 -	Today, 15:27:09 - 1		
Live classification Model testing	20231128150613 -	Today, 15:27:09 - I		
Verslaning	20231128150604 -	Today, 15:27:09 - I		
Deployment	20231128150833 -	Today, 15:27:09 - 1		
	20231128150600 -	Today, 15:27:09 -		
TING STARTED	20231128150855 -	Today, 15:27:09 · I	Metadata	? +
Documentation	20231128150458 -	Today, 15:27:09 -	No metadata.	

All the not-labeled images (47) were uploaded but must be labeled appropriately before being used as a project dataset. The Studio has a tool for that purpose, which you can find in the link Labeling queue (47).

There are two ways you can use to perform AI-assisted labeling on the Edge Impulse Studio (free version):

- Using yolov5
- · Tracking objects between frames

Edge Impulse launched an <u>auto-labeling feature</u> for Enterprise customers, easing labeling tasks in object detection projects.

Ordinary objects can quickly be identified and labeled using an existing library of pre-trained object detection models from YOLOv5 (trained with the COCO dataset). But since, in our case, the objects are not part of COCO datasets, we should select the option of tracking objects. With this option, once you draw bounding boxes and label the images in one frame, the objects will be tracked automatically from frame to frame, partially labeling the new ones (not all are correctly labeled).

You can use the <u>EI uploader</u> to import your data if you already have a labeled dataset containing bounding boxes.

#### Labeling the Dataset

Starting with the first image of your unlabeled data, use your mouse to drag a box around an object to add a label. Then click Save labels to advance to the next item.



Continue with this process until the queue is empty. At the end, all images should have the objects labeled as those samples below:



Next, review the labeled samples on the **Data acquisition** tab. If one of the labels is wrong, you can edit it using the three dots menu after the sample name:

EDGE IMPULSE	Dataset		1	4 B	Connect a device to start building your dataset.	
	Training (50) Test (5)		т	<b>2</b> C	RAW DATA	
Dashboard	SAMPLE NAME	LABELS	GIGGA		20231128150453	
Devices	20231128150850	bug, bug, fruit, fruit	Today, 15:27:08	1		
Data acquisition	20224120120212	h a	T			
Impulse design	20231128150710	bug	100 <i>a</i> y, 15:27:08			
Create impulse	20231128150514	fruit, fruit, fruit	Today, 15:27:08	1	Test States States	
EON Tuner	20231128150732	bug, bug	Today, 15:27:08	I		
Retrain model	20231128150733	bug	Today, 15:27:08	I		
Live classification	20231128150532	fruit, fruit, fruit, fruit	Rename		Metadata	? +
Model testing	20231128150903	bug, bug	Edit labels		No metadata	
Versioning	20221120120720	hur hur	Clear labels		The Electronic and	
Danloumant	20231126150730	bug, bug	Disable			
Deployment	20231128150718	bug	Download			
ITING STARTED	20231128150527	fruit, fruit, fruit, fruit	Delete			
Documentation	20231128150453	bug	Today, 15:27:08	1		
Forums	20231128150720	bug	Today, 15:27:08	I		
		01	2.8.4	5 >		

You will be guided to replace the wrong label and correct the dataset.

EDGE IMPULSE	Dataset		±	<b>6</b> B	Connect a device to start building your dataset.	
Dathbard	Training on Test on		т	<b>1</b>	AW DATA	
Dashboard	SAMPLE NAME	LABELS	ADDED			
Devices	20231128150850	bug, bug, fruit, fruit	Today, 15:27:08	1		
Data acquisition	labels for '2023112815045	3' 🔥			×	
Impulse design						
Create impui		Use your mou	ise to drag a box aro	und an objec	ct to add a label.	
EON Tuner			1.00	1000		
Retrain model		- 81	<b>•</b>	ut		
Live classification			-		?	+
Model testing			-			
Veriening						
versioning				N		
Deployment						
ETTING STARTED					Save labels	
Documentation		-				
Ensume	20231128150720	bug	Today 15:27:08	1		
e Pordina						

#### **Balancing the dataset and split Train/Test**

After labeling all data, it was realized that the class fruit had many more samples than the bug. So, 11 new and additional bug images were collected (ending with 58 images). After labeling them, it is time to select some images and move them to the test dataset. You can do it using the three-dot menu after the image name. I selected six images, representing 13% of the total dataset.

e -> C M == stud	o.edgempulse.com/studio/315	759/acquisition/train	ing?page=5			ଏନ ଅ 🗄 🖬 🚭
EDGE IMPULSE		м	jRoBot (Marcelo Rov	vai) /	XIAO-ES	3253-Sense-Object, Detection
<ul> <li>Dashboard</li> </ul>	Dataset Data sources	Labeling queue	(0)			
Devices	DATA COLLECTED		NN / TEST SPLIT		6	Collect data 🔹 🐟
Data acquisition	Jonema					
<ul> <li>Impulse design</li> </ul>	Dataset		Ŧ	۵	в	Connect a device to start building your dataset.
Create impulse			_			RAW DATA
EON Tuner	Training (54) Test (5)		Ť		0	20231128150938
C Retrain model	SAMPLE NAME	LABELS	ADDED			frut an a
2 Live classification	20231128150543	fruit, fruit	Today, 15:27:07		1	True International
Model testing	20231128150910	bug	Today, 15:27:07		ł.	
Versioning	20231128150938	bug, bug, fruit, fruit	Today, 15:27:07		1	
Declarment	20231128150625	fruit, fruit, fruit, fru.	Rename			
Ureproyment.	20231128151648	bug, bug, fruit, fruit	Edit labels			
GETTING STARTED	2022122012020	hat hat	Clear labels			Metadata ? +
1 Documentation	20231128130736	oug, oug	Move to test set			
Forums	20231128150635	fruit	Download			No metadata.
	20231128150437	fruit	Delete			
	20231128150508	fruit, fruit, fruit	Today, 15:27:06		1	
	20231128150750	but	Today, 15:27:05			

## 4.5.5 The Impulse Design

In this phase, you should define how to:

- **Pre-processing** consists of resizing the individual images from 320 x 240 to 96 x 96 and squashing them (squared form, without cropping). Afterward, the images are converted from RGB to Grayscale.
- Design a Model, in this case, "Object Detection."



#### **Preprocessing all dataset**

In this section, select **Color depth** as Grayscale, suitable for use with FOMO models and Save parameters.



The Studio moves automatically to the next section, Generate features, where all samples will be pre-processed, resulting in a dataset with individual 96x96x1 images or 9,216 features.

			MiRoBot (Marcelo Roval) / XIAO-D	SP3253-Sense-Object, Detection		
EDGE IMPULSE Dashboard Devices Data acquisition	#1 - Click to set a descr Parameters Generate featu Training set	iption for this version res		Feature explorer		
Impulse design Create impulse Image Object detection EON Tuner	Data in training set Classes	52 items 2 (bug, fruit)	Generate features	<ul> <li>bug</li> <li>fruit</li> </ul>		
Retrain model Live classification Model testing Versioning Deployment	Feature generation outp	ut	ζ <b>ξ.</b> (0)		••	
TTING STARTED Documentation Forums	Still running Still running Still running Tue New 20 39:09:20 2023 Fir Reducing dimensions for viso Job completed	rished embedding alizations OK		20231128150532 Label: fruit <u>Move sample</u> <u>View features</u>	for the second s	

The feature explorer shows that all samples evidence a good separation after the feature generation.

Some samples seem to be in the wrong space, but clicking on them confirms the correct labeling.

## 4.5.6 Model Design, Training, and Test

We will use FOMO, an object detection model based on MobileNetV2 (alpha 0.35) designed to coarsely segment an image into a grid of **background** vs **objects of interest** (here, boxes and wheels).

FOMO is an innovative machine learning model for object detection, which can use up to 30 times less energy and memory than traditional models like Mobilenet SSD and YOLOV5. FOMO can operate on microcontrollers with less than 200 KB of RAM. The main reason this is possible is that while other models calculate the object's size by drawing a square around it (bounding box), FOMO ignores the size of the image, providing only the information about where the object is located in the image through its centroid coordinates.

#### How FOMO works?

FOMO takes the image in grayscale and divides it into blocks of pixels using a factor of 8. For the input of 96x96, the grid would be 12x12 (96/8=12). Next, FOMO will run a classifier through each pixel block to calculate the probability that there is a box or a wheel in each of them and, subsequently, determine the regions that have the highest probability of containing the object (If a pixel block has no objects, it will be classified as background). From the overlap of the final region, the FOMO provides the coordinates (related to the image dimensions) of the centroid of this region.



For training, we should select a pre-trained model. **Let's use the FOMO (Faster Objects, More Objects) MobileNetV2 0.35.** This model uses around 250KB of RAM and 80KB of ROM (Flash), which suits well with our board.

•	• •	NICLA_Vision_Objec	t Detecti: 🗙 🔤	NCLA_Vision_Object Detection x +			~
÷	→ C t	🗘 🔒 studio.edg	eimpulse.com/stu	dio/292737/learning/keras-object-detection/5			0 x 🛪 🖬 👹 i
E	EDGE	E IMPULSE	Neur	Choose a different model		×	谈(0) •
o	Dashbo	ard	Traini	Did you know? You can customize your model through the Expert view ( or can even bring your own model (in PyTerch, Keras or scikit	:lick on 🗄 to switch), t-learn).		
•	Devices		Numb	MODEL	AUTHOR		
•	Data acc	quisition design	Learnin Data a	MobileNetV2 350 FPN-Lite 320-320 EXPLOREMENTATION A pre-trained object detection model designed to locate up to 10 objects within an image, outputing a bounding box for each object detected. The model is around 37.MB in site. Its supports an RGB input at 20:0320px.	Edge impulse	Add	
	<ul> <li>Imi</li> <li>Obj</li> </ul>	age iject detection	Advar	FOMO (Faster Objects, More Objects) MobileNetV2 0.1 INFORMATION An object detection model based on MobileNetV2 (alpha 0.1) designed to coarsely segment an image into a grid of background vs objects of interest. These models are designed to be <100KB in size and support a grayscale input at any resolution.	Edge Impulse	Add	
© × ×	EON Tur Retrain I Live clas Model to	ner model ssification esting		FOMO (Faster Objects, More Objects) MobileNet/2 0.35 encoursements An object detection model based on MobileNet/2 (alpha 0.35) designed to coarsely segment an image into a grid of background vs objects of interest. These models are designed to be <100KB in size and support a grayscale input at any resolution.	Edge impulse	Add	
P Ø	Versioni Deployn	ing ment		YOLOVİ for Renesas DRP-AL CONSUMPT Transfer learning model using YOLOVİ vİ branch with yolovİs pt weights. This block is only compatible with Renesas DRP-AL	Renesas	Add	
GET 57	TING STAR	TED		YOLOV5 CEMINITY Transfer learning model based on Ultralytics YOLOv5 using yolov5n.pt weights, supports RGB input at any resolution (square images only).	Community blocks	Add	
0	Forums			VOLOX for TI TDAVM (CONVENT) TYS EDGGA VOLOX, https://gthub.com/TexisInstrument/relgeal/yelox, Dutputs ONNOV/P model format both with and without final detect layers using PyTorch 1.3.1.5 etc. the implementation https://gthub.com/edgeimpubelexample-sustom- mi-block-o-yelox/treelannx-v7	Texas instruments	Add	0

Regarding the training hyper-parameters, the model will be trained with:

- Epochs: 60
- Batch size: 32
- Learning Rate: 0.001.

For validation during training, 20% of the dataset (validation\_dataset) will be spared. For the remaining 80% (train\_dataset), we will apply Data Augmentation, which will randomly flip, change the size and brightness of the image, and crop them, artificially increasing the number of samples on the dataset for training.

As a result, the model ends with an overall F1 score of 85%, similar to the result when using the test data (83%).

Note that FOMO automatically added a 3rd label background to the two previously defined (box and wheel).

EDGE IMPULSE	Neural Network settings		1	Training output 🕴 🕫		滚(0) -			
Dashboard	Training settings			Profiling float32 model INFO: Created TensorFlow Lite MAMPACK delegate for CPU. Profiles float91 model (feesefiles Lite Mirrol					
Devices	Number of training cycles ①	60		Profiling float32 model (EON) Attached to job 14838652					
Data acquisition	Learning rate ③	0.001		Attached to job 14830652 Profiling int8 model Profiling int8 model (TensorFlow Lit	e Microl				
<ul> <li>Impulse design</li> </ul>	Data augmentation ①			Profiling int& model (EGN) Attached to job 14030652 Attached to job 14030652	(EON) 1652 8652				
<ul> <li>Create impulse</li> </ul>	Advanced training settings			. Model traiming complete					
<ul> <li>Image</li> </ul>	Validation set size ①	20	96	Job completed					
<ul> <li>Object detection</li> </ul>	Split train/validation set on metadata key ②								
EON Tuner	Batch size (9	32		Model	Model version:	(Duantized (int8) *			
C Retrain model	Profile int8 model @	0		into cr		(townstation)			
Y Live classification		-		Last training performance (validation s	et)				
Model testing	Neural network architecture			5.2%					
Versioning	Input layer (9,216	i features)		Confusion matrix (validation set)					
Deployment						101117			
ETTING STARTED	E	2		BACKGROUND 99.7%	0.2%	0.1%			
Documentation	FOMO (Faster Objects, More Ob	ojects) MobileNetV2 0.35		FRUIT 10%	72.7%	0% 80%			
Forums	Choose a dillare	int model		F1 SCORE 1.00	0.73	0.92			
	Choose a diritere			On-device performance ③					
	Output layer (2	classes)		INFERENCING TIME     955 ms.	PEAK RAM USAGE	PLASH USAGE 77.8K			
	for a second	los l							

In object detection tasks, accuracy is generally not the primary <u>evaluation metric</u>. Object detection involves classifying objects and providing bounding boxes around them, making it a more complex problem than simple classification. The issue is that we do not have the bounding box, only the centroids. In short, using accuracy as a metric could be misleading and may not provide a complete understanding of how well the model is performing. Because of that, we will use the F1 score.

#### **Test model with "Live Classification"**

Once our model is trained, we can test it using the Live Classification tool. On the correspondent section, click on Connect a development board icon (a small MCU) and scan the QR code with your phone.

			Mithather Officerals Device - 1 1940 CONDO	C) CARRA Object Datastian		4
EDGEIMPOLSE	c and	ollect new data		2		
Dashboard	Classify new da	Collect data directly from your phone	, computer, device, or development boar	d.		
Devices	Device (1)					÷
Data acquisition	Sensor		-	-		
Impulse design	Sample length (ms.		-	-	Load sample	
<ul> <li>Create impulse</li> </ul>	Frequency	Scan QR code to connect to your phone	Connect to your computer	Connect your device or development board		
Image     Object detection						
EON Tuner		Start sampling				
Retrain model						
Live classification	© 2023 EdgeImpulse Inc. /	NI rights reserved				
Model testing						
Versioning						
Deployment						
TTING STARTED						
Documentation						
Documentation Forums						
Documentation Forums						

Once connected, you can use the smartphone to capture actual images to be tested by the trained model on Edge Impulse Studio.

	16:25	! † 😰	16:24	.::! <b>≑ ⊠</b>	16:27	! † 🗹
<ul> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li> <li>(*)</li></ul>	AA 📑 🔒 hone.edg	eimpulse.com 🖒	AA = hone.edg	geimpulse.com 🖒	AA 📑 🔒 hone.	edgeimpulse.com 🖒
	MJRoBot	(Marcelo Ro	MJRoBo	t (Marcelo Ro	🚍 MJRo	Bot (Marcelo Ro
	fruit (0.97	) fruit (0.89)	fruit (1.00)	it (1.00)	bug (0.99)	bug (0.71)
	fruit (1.00)		bug (0.75)	bug (0.81)		
C edgeimputse.com ×	Time per infer	ncing	Infer Time per inf	rencing	Time p	Inferencing er inference: 1 ms.
CINEMA VÍDEO FOTO RETRATO PANO				_		
· ·	Switch to data c	ollection mode	Switch to data	collection mode	Switch to a	data collection mode
	< > <u></u>		< >	0 m C	$\langle \rangle$	<u>ф</u> ф

One thing to be noted is that the model can produce false positives and negatives. This can be minimized by defining a proper Confidence Threshold (use the Three dots menu for the setup). Try with 0.8 or more.

## 4.5.7 Deploying the Model (Arduino IDE)

Select the Arduino Library and Quantized (int8) model, enable the EON Compiler on the Deploy Tab, and press [Build].

		10/010100/00/0	epioyment								
EDGE IMPULSE	Configure your deploy	ment				Latest build					
Dashboard	You can deploy your impuls minimizes latency, and runs	e to any device with minimal p	This makes the mover consumption	odel run without an inte 5. Read more.	ernet connection,	Cost v3 (C++ li Today, 15:	brary) 25:06			B View	w docs
Devices						-					
Data acquisition	Q. Arduino library	×			- 1						
Impulse design						Run this model					
Create impulse	SELECTED DEPL	OYMENT N				Scan QR code or lau	nch in browser to t	est your pr	ototype		
Image	ARDUINO An Arduino libr boards.	rary with examp	ples that runs on m	ost Arm-based Arduino	development		-				
<ul> <li>Object detection</li> </ul>							見感知	68			
EON Tuner								2.2			
	MODEL OPTIMIZATIONS						373-1396	in the second			
<ul> <li>Bassala madal</li> </ul>	Model optimizations car	increase on-d	evice performance	but may reduce accura	CV.		ALC: NOT				
Retrain model	Model optimizations car	n increase on-d	evice performance	but may reduce accura	cy.			發展			
Retrain model	Model optimizations car	n increase on-d	evice performance accuracy, up to 501	but may reduce accura 6 less memory. Learn ma	cy. Ire			ġ.			
Retrain model     Live classification     Model testing	Model optimizations can Enable EON <sup>IN</sup> Co	n increase on-de	evice performance accuracy; up to 501	but may reduce accura 6 less memory. Learn ma	cy.	_	Launch in	browser			
Retrain model     Live classification     Model testing     Versioning	Model optimizations car enable EON™ Co Quantized (int8) Selected ✓	ompiler Same	evice performance accuracy; up to 501 IMAGE 15 ms.	but may reduce accura 6 less memory. Learn me OBJECT DETECTION 955 ms.	re TOTAL 920 ms.	-	Launch in	browser			
Retrain model     Live classification     Model testing     Versioning     Deployment	Model optimizations car Enable EON <sup>W</sup> Co Quantized (Int8) Selected V	ampiler Same	evice performance accuracy, up to 501 IMAGE 15 ms. 40K	6 less memory: Learn me ospect perfection 905 ms. 239-4K	50. 10 10 10 10 10 10 10 10 10 10 10 10 10	-	Launch in	browser			
Retrain model     Uve classification     Model testing     Versioning     Deployment	Model optimizations can	EATENCY RAM FLASH	evice performance accuracy, up to S01 IMAGE 15 ms. 4.0K -	but may reduce accura 8 less memory: Learn me 955 ms. 239-4K 77.8K	593 ms. 239.4K -	-	Launch in	browser	J		
Clear Retrain model Clear Retrain model Model testing Versioning Deployment	Model optimizations car	LATENCY RAM FLASH ACCURACY	evice performance accuracy, up to 501 IMAGE 15 ms. 4,0K -	6 less memory. Learn me 6 less memory. Learn me 955 ms. 239-94 77.8K	re TOTAL 938 ms. 239.4K -	-	Launch In	browser	)		
Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve classification Cleve cl	Model optimizations car Enable EON* Co Quantized (imt8) Salectes V Unsptimized (fleat22)	A Increase on-di A A A A A A A A A A A A A A A A A A A	evice performance accuracy, up to 500 IMAGE 15ms, 4.0K IMAGE	but may reduce accura 6 Jess memory: Learn mo 6 Object Detection 955 ms. 239-94 77.34 0 Object Detection	re TOTAL 355 ms. 235 4K - - - -	-	Launch In	browser	J		
Retrain model     Live classification     Model testing     Versioning     Deployment     ETTING STARTED     Documentation	Model optimizations can Quantized Imitil Skinns v Unoptimized (finaciz) Select	LATENCY RAM FLASH ACCURACY	evice performance accuracy, up to 500 BMAGE S5ms, 4.0K - BMAGE S5ms, 15ms, 100 BMAGE S5ms, 100 BMAGE	but may reduce accura object priterion 955 m. 239.4K 77.8K Object petiterion 2401 m.	CV- TOTAL 998 ms. 239 4K - - - TOTAL 2,706 ms.	-	Launch In	browser			
C Retrain model V Elve classification Model testing V Versioning Deployment CTTING STARTED F Documentation F Documentation F Forums	Model optimizations can Quantized (Initi) Statutes v Unsprimized (Ibarti2) Salect	Anternet and Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet Anternet	evice performance execuracy, up to 501 BMAGE 15 ms. 4.6K - IMAGE 13 ms. 4.6K	but may reduce accura object ortection 955ms 225.4K 772.5K 0880CT OFTECTION 2.001ms 887.1K 101.5K	CV.	-	Launch in	browser			
Retrain model     Live classification     Model testing     Versioning     Deployment  ettitivo 37ARTED     Documentation     Forums	Model optimizations can Quantized (Initi) Sources v Unoptimized (fibart32) Solart	LATENCY RAM LATENCY RAM ACCURACY RAM ACCURACY	evice performance executacy; up to 501 BMAGE 15 ms, 4.0K - - -	but may reduce accura N less memory. Learn me ospect aetrection 955ms. 229.64 77.84 040ECT 0ETECTION 040ECT 0ETECTION 847.14 101.24	95. TOTAL 939 mL 239.64	-	Launch in	browser			
Retrain model Leve classification Model testing Versioning Deployment ETTING STARTED Documentation Forums	Model optimizations care C Enable EON**CC Quantized (inst) Counciled (inst) Unoptimized (flact.32) Solice Extenses for Supervised E24-C	LATENCY RAM FLASH ACCURACY LATENCY RAM ACCURACY VE (ISPA2 Jobush	evice performance accuracy, up to 50 HMAGE 13 ms. 46K - 13 ms. 46K - - - - - Change target	but may reduce accura is less memory. Learn mo dagest personant object personant 288 K 288 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 208 K 2	92. TO TAL 203 mAL 203 mAL 203 MAC 203 MAC		Launch in	browser			

Open your Arduino IDE, and under Sketch, go to Include Library and add.ZIP Library. Select the file you download from Edge Impulse Studio, and that's it!

	→ ② ♀ XIAO_ESP32S3	*					
P-1	CameraWebServer-dec23.ino app_httpd.	.cpp camera_index.h camera_pins.h					
	13 // ==================================						
	14 // Select camera model						
	15 // ==================================						
	16 //#define CAMERA_MODEL_	WROVER_KIT // Has PSRAM					
	17 //#define CAMERA_MODEL_	ESP_EYE // Has PSRAM					
Macintosh Hi		CONSCIENT (/ Use DODAN					
OneDrive		Downloads				Q Search	
oud	Name		Size	Kin	i	Date Added	
iCloud Drive	ei-xiao-esp32s3-sense-object_	_detection-arduino-1.0.2.zip		5,2 MB ZIP	archive	Today 16:33	
Documents	🖿 20231128155315.jpg			9 KB JPI	EG image	Today 15:53	
Desktop	<b>20231128155313.jpg</b>			10 KB JPI	G image	Today 15:53	
o channed	20231128155311.jpg			10 KB JPI	G image	Today 15:53	
shared	20231128155353.jpg			10 KB JPI	G image	Today 15:52	
vorites	20231128155251.jpg			8 KB JPI	G image	Today 15:52	
Dropbox	20231128155247.jpg			9 KB JPI	EG Image	Today 15:52	
Recents	20231128155242.jpg			10 KB JPI	G image	Today 15:52	
	20231128155240.jpg			8 KB JPI	G image	Today 15:52	
Applications	20231128155238.jpg			8 KB JPI	EG Image	Today 15:52	
Downloads	20231128155235.jpg			TU KB JPI	to image	100ay 15-52	
On My Mac	-					Cancel	
, marcelo_rore	Seriel Monitor X Output					× 0	-
	Messara (Enter to send messare to 'YIAO. I			Both NI &	CR Y	115200 baud	
				DOMITIC O	on	110200 0000	
	WiFi connected						
	[ 2111][I][app_httpd.cpp:1361] s	tartCameraServer(): Starting web server o	on port: '80'				
	[ 2113][I][app_httpd.cpp:1379] st	cartcameraServer(): Starting stream serve	er on port: '81'				
8	Camera Ready: Ose hccp://192.100	.ee.250 to connect					

Under the Examples tab on Arduino IDE, you should find a sketch code (esp32 > esp32\_ camera) under your project name.

XIAO_BLE_SenseKeyWord_Spotting_inferencing XIAO_BLE_SenseMotion_Classification_inferencing XIAO_BLE_SenseSound_Classification_KWSinferencing XIAO_ESP32S3_mug_or_not_mug_inferencing	> > > >				
XIAO-ESP32S3-CAM-Fruits-vs-Veggies_inferencing	>	esp32	>	esp32_camera	
XIAO-ESP32S3-CAM-Fruits-vs-Veggies-ESP-NN_inferencing	>	nano_ble33_sense	>	esp32_fusion	
XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN_inferencing	>	nano_ble33_sense_rev2	>	esp32_microphone	
XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v2_inferencing	>	nicla_sense	>	esp32_microphone_continuous	
XIAO-ESP32S3-KWS_inferencing	>	nicla_vision	>		
XIAO-ESP32S3-Motion-Classification_inferencing	>	portenta_h7	>		
XIAO-ESP32S3-Piriquito-vs-Robot_inferencing	>	rp2040	>		
XIAO-ESP32S3-Sense-Object_Detection_inferencing	>	static_buffer	>		

You should change lines 32 to 75, which define the camera model and pins, using the data related to our model. Copy and paste the below lines, replacing the lines 32-75:

#define	PWDN_GPI0_NUM	-1
#define	RESET_GPI0_NUM	-1
#define	XCLK_GPI0_NUM	10
#define	SIOD_GPIO_NUM	40
#define	SIOC_GPIO_NUM	39
#define	Y9_GPI0_NUM	48
#define	Y8_GPI0_NUM	11
#define	Y7_GPI0_NUM	12
#define	Y6_GPI0_NUM	14
#define	Y5_GPI0_NUM	16
#define	Y4_GPI0_NUM	18
#define	Y3_GPI0_NUM	17
#define	Y2_GPI0_NUM	15
#define	VSYNC_GPI0_NUM	38
#define	HREF_GPI0_NUM	47
#define	PCLK GPIO NUM	13

Here you can see the resulting code:

esp32_camera   Arduino IDE 2.2.1	esp32_camera   Arduino IDE 2.2.1
	O- Ø Ø Ø IV XIAO_ESP3253 ▼ ↓
esp32_camera.ino	··· esp32_camera.ino
31 32 Biefine CAMERA MODEL ESP EYE // Has DSRAM	18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FR
33 //#define CAMERA MODEL AI THINKER // Has PSRAM	19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
34	20 * SOFTWARE.
35 #if defined(CAMERA MODEL ESP EYE)	21 */
36 #define PWDN GPIO NUM -1	22
37 #define RESET GPIO NUM -1	23 /* Includes
38 #define XCLK_GPIO_NUM 4	24 #include <xia0-esp32s3-sense-object_detection_inferencing.h></xia0-esp32s3-sense-object_detection_inferencing.h>
39 #define SIOD_GPIO_NUM 18	25 #include "edge-impulse-sdk/dsp/image/image.hpp"
40 #define SIOC_GPIO_NUM 23	26
41	27 #include "esp_camera.n"
42 #define Y9_GPI0_NUM 36	28
43 #define Y8_GPI0_NUM 37	29 // Select Camera model - Tind more camera models in camera_pins.n Tile here
44 #define Y7_GPI0_NUM 38	30 // https://github.com/espressi/arouino-espsz/otoo/master/tioraries/Espsz/exa 31
45 #define Y6_GPI0_NUM 39	
46 #define Y5_GPI0_NUM 35	
47 #define Y4_GPI0_NUM 14	24 reference VCIV COLONIN -1
48 #define Y3_GPI0_NUM 13	
49 #define Y2_GPI0_NUM 34	36 martine stor Onto New 30
50 #define VSYNC_GPI0_NUM 5	37 37
51 #define HREF_GPI0_NUM 27	28 Refine YD GPTO NUM 48
52 #define PCLK_GPI0_NUM 25	30 Biofine V8 CPT NIM 11
53	48 Bidefine Y7 GPID NIM 12
54 #elif defined(CAMERA_MODEL_AI_THINKER)	41 Biefine VS GPTO NUM 14
55 #define PWDN_GPI0_NUM 32	42 referine YS GPID NUM 16
56 #define RESET_GPIO_NUM -1	43 define Y4 GPID NUM 18
57 #define XCLK_GPI0_NUM 0	44 #define Y3 GPID NUM 17
58 #define SIOD_GPIO_NUM 26	45 #define Y2 GPID NUM 15
59 #define SIOC_GPIO_NUM 27	46 #define VSYNC GPIO NUM 38
60	47 Edefine HREE OPIO NUM 47
61 #define Y9_GPI0_NUM 35	48 #define PCLK GPIO NUM 13
62 #define Y8_GPI0_NUM 34	49
63 #define Y7_GPI0_NUM 39	50 /* Constant defines
64 #define T6_GPI0_NUM 36	51 #define EI_CAMERA_RAW_FRAME_BUFFER_COLS 320
65 #define Y5_GPI0_NUM 21	52 #define EI_CAMERA_RAW_FRAME_BUFFER_ROWS 240
66 #define Y4_GPID_NUM 19	53 #define EI_CAMERA_FRAME_BYTE_SIZE 3
67 #define Y3_GPI0_NUM 18	54
68 #define YZ_GPI0_NUM 5	55 /* Private variables
by #define VSWN_GPI0_NUM 25	56 static bool debug nn = false; // Set this to true to see e.g. features general
70 POETINE NEEP OPTO NUM 23	<pre>57 static bool is_initialised = false;</pre>
71 #define PULK_UPIU_NUN 22	58 wint8_t *snapshot_buf; //points to the output of the capture
72 80140	59
73 Weise 74 deser "Comes ande) oot selected"	<pre>60 static camera_config_t camera_config = {</pre>
74 werror camera model not selected.	61 .pin_pwdn = PWDN_GPIO_NUM,
73 WENG11	<pre>62 .pin_reset = RESET_GPI0_NUM,</pre>
70 77 In Constant defines	63 .pin_xclk = XCLK_GPIO_NUM,
// /* Constant defines	64
78 Eduction FT CAMERA RAW FRAME RUFFER COLS 320	

Upload the code to your XIAO ESP32S3 Sense, and you should be OK to start detecting fruits and bugs. You can check the result on Serial Monitor.

#### Background



#### Fruits



Note that the model latency is 143ms, and the frame rate per second is around 7 fps (similar to what we got with the Image Classification project). This happens because FOMO is cleverly built over a CNN model, not with an object detection model like the SSD MobileNet. For example, when running a MobileNetV2 SSD FPN-Lite 320x320 model on a Raspberry Pi 4, the latency is around five times higher (around 1.5 fps).

## 4.5.8 Deploying the Model (SenseCraft-Web-Toolkit)

As discussed in the Image Classification chapter, verifying inference with Image models on Arduino IDE is very challenging because we can not see what the camera focuses on. Again, let's use the **SenseCraft-Web Toolkit**.

Follow the following steps to start the SenseCraft-Web-Toolkit:

- 1. Open the <u>SenseCraft-Web-Toolkit website</u>.
- 2. Connect the XIAO to your computer:
- Having the XIAO connected, select it as below:



• Select the device/Port and press [Connect]:

●●●	ib x	SenseCraft Al	× Ø Mask Detection with ESP3 foolkit/W/setup/process	2) 🛪   🚥 Person_Classification_Mob	i: x   +			\$	0.00
SenseCraft Setup Process	d-studio oithuh i USB JTXG/selal debog	in wants to connect to a s			Preview Settings Confidence @	2 %	* 8	C XAO ESP3253 ~	C Connect
Output Ø Tool	0	Cancel	Prior Classification	Serd	iou @ Preview				0 Stucke
	or	esture Defection	April: Detection	Strauberry Detection					
	*		Upload Custom Al Model						

You can try several Computer Vision models previously uploaded by Seeed Studio. Try them and have fun!

In our case, we will use the blue button at the bottom of the page: [Upload Custom AI Model].

But first, we must download from Edge Impulse Studio our quantized .tflite model.

- 3. Go to your project at Edge Impulse Studio, or clone this one:
- XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN
- 4. On Dashboard, download the model ("block output"): Object Detection model TensorFlow Lite (int8 quantized)

• • • 🔄 5 🖬   🤣 Mod   😋	MNI   💮 See:   😋 Pers   🖲 N	IIC:	List   🖲 MNI   🚍	🗅 Usir 🔛 🗈	x 🖴 mni:   🛞 (1) E   🛃 210:   + 🗸 🗸
← → C ⋒ 😅 https://stud	lio.edgeimpulse.com/studio/3157	59			☆ む 🛛 🌚 :
💳 EDGE IMPULSE	Download block output	ıt			
	TITLE	TYPE	SIZE		Collaborators (1/4)
Dashboard	Image training data	NPY file	52 windows	в	
<ul> <li>Devices</li> <li>Data acquisition</li> </ul>	Image training labels	JSON file	52 windows	в	MjRoBot (Marcelo Rovai) owwe
<ul> <li>Impulse design</li> </ul>	Image testing data	NPY file	6 windows	в	Summary
Create impulse	Image testing labels	JSON file	6 windows	в	DEVICES CONNECTED
Object detection	Object detection model	TensorFlow Lite (float32)	82 KB	в	
Ø EON Tuner	Object detection model	TensorFlow Lite (int8 quantized)	55 KB	•	59 items
Ketrain model     Live classification	Object detection model	TensorFlow SavedModel	186 KB	6	Project info
Model testing	Object detection model	Keras h5 model	88 KB	в	Project ID 315759
P Versioning					

5. On SenseCraft-Web-Toolkit, use the blue button at the bottom of the page: [Upload Custom AI Model]. A window will pop up. Enter the Model file that you downloaded to your computer from Edge Impulse Studio, choose a Model Name, and enter with labels (ID: Object):

Sensecratt		? % * 👩 :: XIAO ESP3253 ~	Disconnect
Serve       Perfs ("processes":4, "inference":100, "po Disease [[5,1]]         Configuration       Perfs ("proprocess":4, "inference":100, "po Disease [[6,1]]         Odust       Perfs ("proprocess":4, "inference":100, "po Disease [[6,1]]         Tosi       Perfs ("proprocess":4, "inference":100, "po Disease [[6,1]]         Perfs ("proprocess":4, "inference":100, "po Disease [[6,1]]       Perfs ("proprocess":4, "inference":100, "po Disease [[6,1]]         Perfs ("proprocess":4, "inference":100, "po Disease [[6,1]]       Perfs ("proprocess":4, "inference":100, "po Disease [[6,1]]         Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]       Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]         Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]       Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]         Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]       Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]         Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]       Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]         Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]       Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]         Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]       Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]         Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]       Perfs ("proprocess":4, "inference":100, "po Disease [[5,1]]         Perfs ("proprocess":4, "infe	aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (3) aa * (		

Note that you should use the labels trained on El Studio, entering them in alphabetic order (in our case: background, bug, fruit).

After a few seconds (or minutes), the model will be uploaded to your device, and the camera image will appear in real-time on the Preview Sector:



The detected objects will be marked (the centroid). You can select the Confidence of your inference cursor Confidence. and IoU, which is used to assess the accuracy of predicted bounding boxes compared to truth bounding boxes

Clicking on the top button (Device Log), you can open a Serial Monitor to follow the inference, as we did with the Arduino IDE.



On Device Log, you will get information as:

- Preprocess time (image capture and Crop): 3 ms;
- Inference time (model latency): 115 ms,
- Postprocess time (display of the image and marking objects): 1 ms.
- Output tensor (boxes), for example, one of the boxes: [[30,150, 20, 20,97, 2]]; where 30,150, 20, 20 are the coordinates of the box (around the centroid); 97 is the inference result, and 2 is the class (in this case 2: fruit)

Note that in the above example, we got 5 boxes because none of the fruits got 3 centroids. One solution will be post-processing, where we can aggregate close centroids in one. Here are other screen shots:



## 4.5.9 Conclusion

FOMO is a significant leap in the image processing space, as Louis Moreau and Mat Kelcey put it during its launch in 2022:

FOMO is a ground-breaking algorithm that brings real-time object detection, tracking, and counting to microcontrollers for the first time.

Multiple possibilities exist for exploring object detection (and, more precisely, counting them) on embedded devices.

## 4.6 To learn more

This section contains links to courses, books, and projects to learn more about Machine Learning and TinyML applications.

## **Online Courses**

Harvard School of Engineering and Applied Sciences - CS249r: Tiny Machine Learning

Professional Certificate in Tiny Machine Learning (TinyML) – edX/Harvard

Introduction to Embedded Machine Learning - Coursera/Edge Impulse

Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse

UNIFEI-IESTI01 TinyML: "Machine Learning for Embedding Devices"

#### Books

"Python for Data Analysis by Wes McKinney"

"Deep Learning with Python" by François Chollet - GitHub Notebooks

"TinyML" by Pete Warden, Daniel Situnayake

"TinyML Cookbook" by Gian Marco Iodice

"Technical Strategy for AI Engineers, In the Era of Deep Learning" by Andrew Ng

"Al at the Edge" book by Daniel Situnayake, Jenny Plunkett

"MACHINE LEARNING SYSTEMS for TinyML" Collaborative effort

## **Projects Repositories**

Edge Impulse Expert Network

MRovai XIAO ESP32S3 Movement/Sound/Image

# Chapter 5: Creative Experiments

Since its launch, the Seeed Studio XIAO series has been widely acclaimed for its compact size, powerful performance, and versatile product range. The maker community has produced a large number of projects created with XIAO. Due to space constraints, we have selected some outstanding projects made with XIAO by our makers. These projects fully demonstrate the powerful functions and wide applications of XIAO. Let us follow the makers' steps, stimulate creativity, and explore the endless possibilities of XIAO. We hope you can draw inspiration from these projects, use your imagination, and explore new territories with XIAO.

# 5.1 Creative and useful XIAO projects

After going through the sections in this book, you might have many novel ideas that you can't wait to implement. But before you rush into it, let's take a look at what interesting stuff others have done with XIAO. For this, we have collected some user-made project cases using XIAO primarily from the globally renowned innovators' communities like <u>hackster.io</u> and <u>instructables</u>, to help you see more possibilities of XIAO.

## 5.1.1 Drone-borne Salt Water Tracker (SWT)

https://www.hackster.io/txnghia/salt-water-tracker-swt-cb68be

#### Author: <u>Nghia Tran</u>

The 'Salt Water Tracker' project, using the <u>XIAO BLE nRF52840 Sense</u>, addresses the problem of seawater erosion in rice fields in areas like the Mekong Delta in Vietnam. The project integrates a saltwater sensor system onto a Hovergames drone, turning the drone into an efficient saltwater tracking tool. This project helps farmers monitor the salinity of rivers and large water networks in real-time to ensure water safety and guide the allocation of reservoir water. The system also features temperature, water quality, air quality sensors, and a camera function for taking pictures or videos of the water area and assisting in determining water type and conditions.



## 5.1.2 SAJAC Project: Intelligent Jacket for Caving Adventure

https://www.hackster.io/rifqiabdillah/sajac-project-smart-jacket-for-caving-0e6a19

#### Author: <u>Rifqi Abdillah</u>

Caving has become increasingly popular in recent years. However, cavers may face a variety of safety hazards, including extreme temperatures, damp air, low air pressure, poor air quality, and toxic gases. To address this, we developed the SAJAC project, an intelligent monitoring system designed to observe environmental conditions within a cave. The system uses Nicla Sense ME to measure the environmental quality around the user and sends the results to the SAJAC app on the user's smartphone. If the cave conditions are not suitable for exploration, Nicla Sense ME or the user's smartphone will receive notification reminders. Meanwhile, at each checkpoint within the cave, there will be a transmitter directly connected to the guard outside the cave. The user can quickly seek help via the transmitter when in danger.

Considering that there is no internet connection in the cave, we use a LoRa communication system based on XIAO ESP32C3 to transmit checkpoint data. When the user reaches the checkpoint, they just need to connect to the transmitter and press the "send" button. If the user encounters a situation where they cannot continue the exploration, they can decide whether to return on their own or wait for the guard's response.

The main post guard will use LoRa to receive data transmitted from within the cave. There is a Wio Terminal equipped with Grove Wio E5 at the outpost to receive data from transmitters inside the cave. The Wio Terminal only needs a 5-volt power supply, suitable for places with limited power.



## 5.1.3 Bicycle Computer on Spresense

#### https://www.hackster.io/jens6151/bicycle-computer-on-spresense-b0e332

#### Author: <u>Jens</u>

The goal of this project is to build a bike computer using the Sony Spresense main board, LTE expansion board, XIAO, and other peripherals. The main features include:

- 1. Capture a low-resolution video stream and display it on a monitor. Option to take high-resolution photos and store them on an SD card.
- 2. Capture mono audio, using the OPUS codec and OGG container format for high compression, to be sent or recorded to SD card via an LTE-M connection.
- 3. Track location via GNSS, combining the location with weather data and points of interest (POI) data received from cloud services via an LTE connection.
- 4. Connect bike sensors (currently heart rate) via Bluetooth Low Energy, display data on the monitor, and record.
- 5. Remote access to the camera, realtime audio stream, and various data (including location) via MQTT.
- 6. Theft detection and notification via GNSS geofencing, accelerometer, and monitoring for nearby smartphones.

This project by Jens demonstrates the astonishing complexity of a hardcore prototype project, as can be seen from the schematic on the right.





## 5.1.4 IoT AI-driven Yogurt Processing & Texture Prediction W/ Blynk

https://www.instructables.com/IoT-AI-driven-Yogurt-Processing-Texture-Prediction/

#### Author: Kutluhan Aktar

The aim of this project is to provide texture prediction for yogurt processing using IoT technology and AI. By using the XIAO ESP32C3 development board, along with a temperature and humidity sensor, integrated pressure sensor kit, I2C weight sensor kit, and DS18B20 waterproof temperature sensor, the project creator built an artificial neural network model and trained it with Edge Impulse to predict yogurt texture without the addition of chemical additives. Users can remotely view sensor readings and control devices through the Blynk app. Finally, the author designed a durable enclosure suitable for a dairy environment. This project has the potential to help dairy product manufacturers reduce costs and improve product quality.



## 5.1.5 Web browser operated robot for gas leak detection

https://www.hackster.io/ivan-arakistain/web-browser-operated-robot-for-gas-leak-detection-4cbelb

Author: Ivan Arakistain



This project repurposes an old hoverboard into a remote-controlled robot equipped with a hydrogen sensor for early detection of hydrogen leaks. It uses Bluetooth to connect the Seedstudio Xiao Ble Sense, MQ-8 gas sensor, and other devices, and uses Edge Impulse Studio to train a machine learning model. The robot also uses the Blues Wireless Notecard NBGL cellular connection technology to upload data to the cloud. With Remo.TV, it can be remotely operated to drive the robot and view real-time camera feeds through a browser.



## 5.1.6 Train Controller With Seeed Studio XIAO ESP32C3

https://www.instructables.com/Train-Controller-With-Seeed-Studio-XIAO-ESP32C3/

#### Author: <u>Tiago Santos</u>

This project designs a train controller using the XIAO ESP32C3 module from Seeed Studio. The project is divided into a train part and a controller part. The train part uses the XIAO ESP32C3 module to connect to the train and controls the train motor through the L293D motor driver. The controller part uses the Wemos D1 Mini to receive speed and direction information and displays the actual speed on a 0.96-inch ssd1306 screen. The controller communicates with the train part through Wi-Fi and an MQTT server. The project simplifies the complexity of traditional Lego train remote control systems and improves control efficiency.





## 5.1.7 RC Car (Arduino-Based 3D Resin Printed) RC\_Car\_RP

https://www.hackster.io/devinnamaky/rc-car-arduino-based-3d-resin-printed-rc-car-rp-9b4dce

#### Author: Devin Namaky

This project is a 3D printed remote-controlled car based on Arduino Nano and Seeeduino XIAO, named RC\_Car\_RP. The project uses two standard 130 type DC motors as drive and steering, and the steering system uses gear transmission. The Seeeduino XIAO module is used to control the motor driver TB6612FNG, realizing the control of the car speed and direction. Communication between the remote control and the car is achieved through the nRF24L01 wireless module.

The project is small in size, simple in design, easy to build, and can meet the remote-controlled car needs in different scenarios.





## 5.1.8 Pet Activity Tracker using XIAO BLE Sense & Edge Impulse



https://www.hackster.io/mithun-das/pet-activity-tracker-using-xiao-blesense-edge-impulse-858d73 Author: <u>Mithun Das</u>



This project is a wearable device that tracks pet activities using XIAO BLE Sense and Edge Impulse, aimed at helping our pets stay active. The XIAO BLE Sense is a mini controller equipped with a powerful Nordic nRF52840 MCU, built-in Bluetooth 5.0 module, and designed around a 32-bit ARM® Cortex<sup>™</sup>-M4 CPU. It features a 6-axis IMU that can be used to predict activities such as rest, walking, and running.

With the accompanying smartphone app, users can connect to the device via Bluetooth and obtain minute-by-minute prediction data. The data is stored in the smartphone's local storage and presented graphically to provide meaningful insights.

The project collects data via the El Blue mobile app, creates machine learning models using Edge Impulse Studio, and builds an iOS app using Google Flutter. The whole system can monitor the pet's activity status in real-time and view the data through the mobile app.



## 5.1.9 H.E.D.S. On your wrist, New Seeeduino XIAO Board

https://www.hackster.io/ihayri1/h-e-d-s-on-your-wrist-new-seeeduino-xiao-board-7d8f74 https:// youtu.be/ql2wnFtSQqQ

#### Author: <u>Hayri Uygur</u>

Hayri has made a Maker-style multifunctional wristwatch, H.E.D.S., using XIAO. It provides a set of small, handy tools with many functions and variations, and is equipped with a beautiful, sharp 240x240 pixel IPS display.



## 5.1.10 Hearbeat Monitor With XIAO NRF52840

https://www.instructables.com/Hearbeat-Monitor-With-XIAO-NRF52840/

#### Author: <u>TiagoSantos</u>

This project uses a XIAO NRF52840 microcontroller, based on the Nordic nRF52840 CPU, to make a heartbeat monitor. This microcontroller supports Bluetooth 5.0 and NFC and has a super small size, making it ideal for wearable devices and other projects with limited space. The project uses another biomedical microcontroller called Bitalino to monitor the heartbeat. The XIAO NRF52840 receives information from the ECG (Electrocardiogram) sensor and then transmits it to a set of LEDs. Through this project, we can view the heart rate in real-time and observe the data of heart activity.

1. Prepare the Bluetooth version of XIAO nRF52840. Its small size is very suitable for wearable devices.

2. Bitalino is a biomedical kit similar to Arduino developed by Hugo Silva in Portugal. This



project will use some modules from it.

3. Circuit diagram: XIAO receives heart rate information from the ECG sensor, converts it, and sends it. The LED flashes with the heart rate, and the Arduino serial port plotter displays the graphical information of the heart rate.







4. Use a perforated board to place components and solder. First, place resistors and the female pins of XIAO, then solder the ECG sensor. Finally, cut the perforated board to the required size.



5. Use Fusion 360 to design the LED shell, the main shell, and the structure of the chest part. Use Creality Slicer to transcode and send it to the 3D printer to get structural parts.





ac Monitoring: ECG Lead Placement

- 6. When connecting the LED, use a perforated board to connect all cathodes and place a ground connector. After all connections are completed, it is necessary to check whether VCC is isolated from the ground and perform a test.
- 7. Not everything can go as expected. During the connection check, the fixture exerted too much force, causing the perforated board to break. It had to be redone.



8. Finally, it's time to connect the battery and isolate all circuits to avoid short circuits. Usually, heat-shrink tubing would be used here, but if there is no suitable size, hot glue can also work.

LL - GREEN electrode placed on the left side below pectoral muscles lower edge of left rib cage.

RA - RED electrode placed under right clavic near right shoulder within the rib cage

frame

Chapter 5: creative experiments 287

9. Place all components on the 3D printed parts and perform a test, then use super glue to connect the parts. The part fixed on the chest was pasted with an elastic band. Finally, replace the LED and remove the resistor to get more noticeable light effects.



10. The final effect.



#### 5.1.11 Multi MIDI Controller, Filter, Router & Sound Generator

https://www.synthtopia.com/content/2022/03/29/multi-midi-controller-filter-router-sound-generator/https://github.com/pangrus/multi

#### Author: Pangrus

Multi is a multifunctional MIDI controller, primarily used for audio synthesis, with a very small size. Compared with the latest generation of commercial controllers, it has a USB port and two DIN interfaces. The Multi controller is fully programmable, allowing for some functionalities in a computer-free setup. In addition, it can also be used as a sound generator as it is equipped with a 10-bit DAC converter, making it ideal for exploring digital synthesis technology. The Multi controller is powered by the robust Seeeduino XIAO, featuring 6 knobs, 2 buttons, 2 Midi DIN interfaces, and a 1/8 inch audio interface. Its MIDI input has opto-isolation to avoid ground loops, complying with the official specification.


# 5.1.12 DIY eurorack modular synth Raspberry Pi VCO with Seeed XIAO

https://www.hackster.io/hagiwo/diy-eurorack-modular-synth-rasberry-pi-vco-with-seeed-xiao-133ac0

#### Author: <u>HAGIWO/ハギヲ</u>

A maker from Japan, <u>HAGIWO /  $11 \neq 7$ </u>, used the Seeed XIAO RP2040 development board to create a Voltage-Controlled Oscillator (VCO) module for a Eurorack modular synthesizer. This board has a Raspberry Pi RP2040 microcontroller, 4 AD converters, and is easier to use than the Raspberry Pi Pico. The VCO module has three modes: Wavefold, FM, and AM, with eight built-in waveforms, costing only about 1100 yen.





# 5.1.13 Xiao CV Sequencer

https://www.instructables.com/Xiao-CV-Sequencer/

#### Author: analogsketchbook

Using the Seeduino Xiao microcontroller and a few parts, a decent CV synthesizer was created, mainly for modular synthesizer systems. Xiao's role in this project is to output Control Voltage (CV) signals through its analog output pins for passing note information between modules. It also controls other features such as adjusting speed, mode switching, and sequence selection.







# 5.1.14 ANAVI Macro Pad 10 & Knobs

https://www.crowdsupply.com/anavi-technology/anavi-macro-pad-10

Author: Crowd Supply

A company has designed and manufactured three small, programmable, open-source mechanical input devices through crowdfunding: ANAVI Macro Pad 10 keyboard, ANAVI Knob 3, and ANAVI Knob 1. All are driven by the powerful Raspberry Pi RP2040 microcontroller inside Seeed XIAO RP2040, support USB Type-C, and run the KMK firmware based on CircuitPython. These customizable devices are suitable for video or audio editing, entertainment broadcasting, gaming, programming, etc., providing precise control and practical lighting effects. They are simple to use, and their plans and schematics can be found on GitHub.



# 5.1.15 Death Stranding Desk Lamp



https://www.hackster.io/wyx269263336/death-stranding-desk-lamp-ae5f71

#### Author: Pinkman

This smart lamp, based on the multifunctional scanning device Odradek in the game Death Stranding, is made up of five separate light blades, each with three degrees of freedom, so you can adjust the desired angle at any

time. It integrates the XIAO nRF52840 Sense Bluetooth main control board and WS2812 magic color light strip, and you can control its color and brightness through a mobile app.





# 5.1.16 HackerBox 0077: Veritas

https://www.instructables.com/HackerBox-0077-Veritas/

#### Author: <u>HackerBoxes</u>

This project teaches you how to make a simple lie detector. It involves configuring the Seeeduino XIAO microcontroller module, modifying the OLED module to achieve dual display operation with a single microcontroller, assembling a Galvanic Skin Response (GSR) sensor based on an operational amplifier, and integrating a heart rate sensor. XIAO acts as the core controller in the project, realizing data collection, processing, and display.



# 5.1.17 DISCIPLINE - A workout timer

#### https://www.hackster.io/rw2493/discipline-a-workout-timer-6b5614

#### Author: <u>Rui Wang</u>

DISCIPLINE: This is a homemade timer that helps you strictly control rest intervals during muscle training. The project uses the Seeeduino XIAO microcontroller, along with two buttons, a display screen, a battery, and other components to achieve a simple user interface and a portable design. XIAO is responsible for the core control function of the timer in the project, providing accurate timing services to users.

The design goals include:

- Small, portable, and compact
- Complete timer functions
- Simple user interface design
- Clear interaction flow
- Cool appearance

Interaction is designed to be as simple as possible to minimize operation steps.

**Yellow and blue button light interaction description:** After some playtests, I then use the yellow button to control the time setup, and I use the blue button to start the counting. To provide a good indication, I did several things for the LEDs. (Y for Yellow, B for Blue) When powering it on: Y -> Fade; B -> ON, indicate to pick up a time period.

SET TIME

 When powering it on: Y -> Fade; B -> ON, indicate to pick up a time period.

Press Y to switch timing options: 30s, 60s, 90s, 120s.

• Press Y to switch timing options: 30s, 60s, 90s, 120s.

Press B to confirm your choice, the timer starts counting down. Y -> OFF; B -> OFF.

• Press B to confirm your choice, the timer starts counting down. Y -> OFF; B -> OFF.

Timer ends counting, B -> ON; Y -> OFF forever.

 Timer ends counting, B -> ON; Y -> OFF forever.

**Two finger operation:** The final design choice was to allow users to hold it easily with one hand and operate it with two fingers.





(1009)



**Magnetic Attachment:** After analyzing pain points, it was decided to use magnets to attach the product to places where interaction and operation are more easily realized.



# 5.1.18 Seeed Fusion DIY XIAO Mecha

https://www.seeedstudio.com/seeed-fusion-diy-xiao-mechanical-keyboard-contest.html

XIAO 的小巧尺寸与其强悍的性能,没想到在 DIY 键盘与控制器玩家中得到认可,为此 Seeed 在 2022 年 7 月至 10 月,组织了一次 <u>Fusion XIAO 机器键盘大赛</u>,下面我们展示了此次比赛的一些获奖项目,以帮助对 DIY 键盘 有兴趣的读者。

## **1st Prize:**

#### TOTEM | a tiny splitkeyboard with splay

(2x)19 key ergo split: 3-key thumb cluster, pinky splay, low profile. Useful repo and classy, unique case. Nicely documented and open source. And it's a usable keyboard, which could be used as a daily driver. Other than that, Marc took a great effort to present his design aesthetically



https://www.hackster.io/geist/totem-a-tiny-splitkeyboard-with-splay-cb2e43

Author: Marc Rühl



## 2nd Prize:

### Beyblock20 | a magnetic, modular MacroPad

https://github.com/ChrisChrisLoLo/beyblock20 Author: Christian Lo

## Purple Owl | a 60% keyboard powered by Seeed XIAO RP2040



https://www.hackster.io/ sonalpinto/purple-owl-a-60keyboard-powered-by-seeedxiao-rp2040-f73604

Author: Sonal Pinto





# **3rd Prize:**

#### KLEIN | a wireless ergonomical

#### keyboard



https://www.hackster.io/nosnk/ klein-a-wireless-ergonomicalkeyboard-b4cd9a

Author: Shashank

## GRIN Quern | an ergonomic keyboard on center trackpad



https://www.hackster.io/policium/ grin-quern-ergonomic-keyboardon-center-trackpad-8b58c3

Author: policium







## Kidoairaku Swallowtail | a cute butterfly-shaped keyboard



Author: yswallow



# About the authors

Lei Feng is the leader of the technical support group and product curriculum at Seeed Studio. An experienced author in the fields of open-source hardware and edge computing, he has published several books in China, including "GameGo Beginner Programming Course for Arcade 《做游戏, 玩编程——零基础开发微软 Arcade 掌机游戏》," "Grove Beginner Kit For Arduino - Codecraft Graphical Programming Course 《 Arduino 图形化编程轻松学》", and the Chinese translation of "IoT for Beginners 《深入浅出 IoT: 完整项目通关实战》" with support from Microsoft China.

Lei Feng has created numerous tutorials and open-source documentation in Chinese and English with his team. His hands-on experience developing IoT and edge computing projects gives him unique insights into simplifying complex concepts for beginners. As an engaging writer and patient teacher, Lei Feng is the ideal guide to make Arduino and TinyML approachable for newcomers worldwide.

LinkedIn profile: <u>https://www.linkedin.com/in/leon-feng-a029bb1/</u>

**Marcelo Rovai** is a recognized figure in engineering and technology education, holding the title of Professor Honoris Causa from the Federal University of Itajubá, Brazil. His educational background includes an Engineering degree from UNIFEI and an advanced specialization from the Polytechnic School of São Paulo University. Further enhancing his expertise, he earned an MBA from IBMEC (INSPER) and a Master's in Data Science from the Universidad del Desarrollo in Chile.

With a career spanning several high-profile technology companies such as AVIBRAS Airspace, ATT, NCR, and IGT, where he served as Vice President for Latin America, he brings a wealth of industry experience to his academic endeavors. He is a prolific writer on electronics-related topics and shares his knowledge through open platforms like Hackster.io.

In addition to his professional pursuits, he is dedicated to educational outreach, serving as a volunteer professor at UNIFEI and engaging with the TinyML4D group as a Co-Chair, promoting TinyML education in developing countries. His work underscores a commitment to leveraging technology for societal advancement.

LinkedIn profile: <u>https://www.linkedin.com/in/marcelo-jose-rovai-brazil-chile/</u>