
XIAO: Big Power, Small Board
Mastering Arduino and TinyML

2 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

3

Preface ...4
Acknowledgments ...4
Introduction ...4
About this Book .. 5

Chapter 1: Introduction to Hardware and Programming ...8
1.1 First Arduino program with Seeed Studio XIAO: Blink .. 9
1.2 Using the Button Switch on the XIAO Expansion Board to Control an LED Light24
1.3 Transforming XIAO and its Expansion Board into a Morse Code Transmitter32
1.4 Monitor Knob Value Changes with Serial Monitor ..39
1.5 Controlling LED and Servo with a Knob ...47
1.6 Displaying "Hello World" on OLED ...56

Chapter 2: Project Practice for Beginners - Introduction to Prototype Design63
2.1 Introduction to Product Prototype Design ... 64
2.2 Smart Hygrometer and Thermometer ...75
2.3 Surprise Gift Box Based on Light Sensor ... 88
2.4 Rhythmic Dance with a Triaxial Accelerometer ..96

Chapter 3: Intermediate Project Practice - Complex Projects ... 107
3.1 Smart Remote Control Door ...108
3.2 Smart Watch .. 116
3.3 Air Piano ... 125
3.4 Implementing Wi-Fi Connection and Applications with XIAO ESP32C3 133
3.5 Telemetry and Commands using the MQTT protocol with XIAO ESP32C3150

Chapter 4: Project Practice Advanced - TinyML Applications ... 168
4.1 Understanding TinyML and Edge Impulse Studio ...169
4.2 Anomaly Detection & Motion Classification... 178
4.3 Sound Classification (KWS) ...209
4.4 Image Classification .. 229
4.5 Object Detection .. 257
4.6 To learn more .. 277

Chapter 5: Creative Experiments ... 278
5.1 Creative and useful XIAO projects ...279

About the authors ... 296

Catalogue

4 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Preface
From the expansive boards of the past, Arduino has come a long way and entered the Seeed
Studio XIAO series: thumb-sized yet power-packed, opening a vast horizon for innovation. “XIAO:
Big Power, Small Board” dives deep into these capabilities, guiding readers from the basics of
Arduino to intricate miniaturized projects. Whether readers want to illuminate an LED or delve
into Embedded Machine Learning (TinyML) with XIAO boards and Edge Impulse Studio, this
book covers them. Need for prior knowledge? No worries! This book takes a hands-on, project-
based approach, ensuring readers grasp the concepts while implementing them. By the end,
they will be adept with XIAO and inspired by many user-created projects showcasing the
endless possibilities this small board offers.

Acknowledgments
We want to express our sincere gratitude to Jiamou Yang, Yanming Wen, Mengdu Li, Chunchun
Tian, Haixu Liu, Tianrui Wang, and Jianjing Huang for their invaluable technical support and
manuscript revisions. This book would not have been possible without their contributions.

We extend our deepest gratitude to the entire TinyML4D Academic Network, comprised of
distinguished professors, researchers, and professionals. Notable contributions from Marco
Zennaro, Brian Plancher, José Alberto Ferreira, Jesus Lopez, Diego Mendez, Shawn Hymel, Dan
Situnayake, Pete Warden, and Laurence Moroney have been instrumental in advancing our
understanding of Embedded Machine Learning (TinyML).

Special commendation is reserved for Professor Vijay Janapa Reddi of Harvard University. His
steadfast belief in the transformative potential of open-source communities, coupled with
his invaluable guidance and teachings, has served as a beacon for our efforts from the very
beginning.

Acknowledging these individuals, we pay tribute to the collective wisdom and dedication that
have enriched this field and our work.

Illustrative images on the e-book and chapter’s covers generated by OpenAI’s DALL-E via
ChatGPT

Introduction
From the expansive boards of the past, Arduino has come a long way and entered the Seeed
Studio XIAO series: thumb-sized yet power-packed, opening a vast horizon for innovation. “XIAO:
Big Power, Small Board” dives deep into these capabilities, guiding readers from the basics of
Arduino to intricate miniaturized projects. Whether readers want to illuminate an LED or delve
into Embedded Machine Learning (TinyML) with XIAO boards and Edge Impulse Studio, this
book covers them. Need for prior knowledge? No worries! This book takes a hands-on, project-
based approach, ensuring readers grasp the concepts while implementing them. By the end,
they will be adept with XIAO and inspired by many user-created projects showcasing the
endless possibilities this small board offers.

5

About this Book
Audience
The primary audience for “XIAO: Big Power, Small Board” encompasses hobbyists, students,
educators, and professionals in electronics and machine learning who want to explore and
maximize the potential of compact hardware platforms. Typically, these readers might hold
positions as electronics enthusiasts, DIY project creators, electronics educators, or even junior
embedded system developers. As they advance in their careers, they might be eyeing roles such
as electronics design engineers, IoT developers, or machine learning hardware integrators.

Our audience possesses a basic understanding of electronics concepts but may have yet
to delve deep into Arduino programming or compact hardware design. They likely have
encountered standard beginner books on Arduino or general electronics but might have yet to
venture into specialized hardware or TinyML. As for skills, they have some hands-on experience
with basic electronics or programming but haven’t mastered the intricacies of TinyML or
advanced microcontroller functionalities.

What readers will learn
By the end of this book, the reader will understand:

• The fundamentals of open-source hardware, focusing on the capabilities of the Seeed Studio
XIAO series.

• How to transition from basic to advanced electronic projects, starting with simple LED
controls and advancing to complex applications like telemetry and voice keyword detection.

• The concepts behind prototype design and its practical implications in product development.

• The intricacies of integrating various modules like the infrared receiver, ultrasonic distance
sensor, and RTC clock with the XIAO platform.

• The signif icance and application of Tiny Machine Learning (TinyML), emphasizing its
transformative power in hardware like the XIAO nRF52840 Sense and ESP32S3 Sense.

• Techniques to utilize advanced tools such as Edge Impulse Studio for real-world applications
like anomaly and object detection and video or sound classification.

The reader will be able to:

• Set up, program, and troubleshoot projects across all XIAO series boards, advancing from
basic hardware interactions to intricate project designs.

• Convert abstract ideas into tangible electronic product prototypes, leveraging the insights
from the course.

• Design and implement intermediate-level projects such as a Smart Watch and Air Piano
using specialized sensors and modules.

• Harness the power of Wi-Fi and MQTT protocols with XIAO ESP32C3 for cloud
communications and data exchange.

• Deploy TinyML on different XIAO boards, executing tasks like image, motion, and sound
classification besides anomaly and object detection.

• Innovate and extend project ideas, drawing inspiration from a curated collection of XIAO
projects and adapting them for custom needs.

6 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Software dependencies

Arduino IDE:

Major updates or changes to the Arduino IDE might affect content related to Arduino
development and programming in the book.

Seeed Studio XIAO Libraries:

Updates to libraries specif ic to the XIAO series can influence the projects or example codes
provided.

Edge Impulse Studio:

Significant updates or feature changes on this platform would necessitate adjustments in the
TinyML chapters.

MQTT Libraries/Protocols:

Any changes related to MQTT libraries or the protocol itself could influence the content of
telemetry and commands.

ESP32 Libraries:

Updates to libraries used by the XIAO ESP32C3 and ESP32S3 board may impact associated
projects or examples.

Book outline

Chapter 1: Introduction to Hardware and Programming

In this chapter, readers start with basic programming on XIAO using Arduino IDE. Through
simple example programs, they will learn to control LED lights, buttons, buzzers, and other
electronic components, mastering core programming concepts like digital I/O, analog I/O, tone
generation, and mapping values. By manually typing out code examples line-by-line, they will
develop strong coding habits and grasp programming syntax.

Chapter 2: Project Practice for Beginners - Introduction to Prototype Design

In this chapter, readers will learn the basics of designing prototypes with XIAO through
beginner-f riendly projects. They will start f rom an idea and quickly create a verif ication
prototype, focusing more on the practical application of code rather than line-by-line analysis.
By leveraging Arduino libraries, community resources, and example programs, they will learn
how to find and adapt code snippets to achieve desired effects efficiently. Furthermore, they will
explore how to design the physical appearance of prototypes by creatively combining electronic
hardware with everyday items. The key outcomes are grasping a project-based approach and
developing skills to build simple interactive prototypes.

Chapter 3: Intermediate Project Practice—Complex Projects

In this chapter, readers will advance their prototyping skills by creating sophisticated IoT
projects with XIAO. They will implement features like Wi-Fi connectivity, MQTT telemetry, and
remote control commands using the XIAO ESP32C3. Through complex builds like an intelligent
remote door, smartwatch, and air piano, you will hone programming techniques for wireless

7

communication, cloud integration, and embedded control. Optional blueprints will be provided,
but readers are encouraged to explore creative enclosure designs with alternative materials. The
key outcomes are mastering intermediate IoT prototyping and preparing for advanced tinyML
applications.

Chapter 4: Project Practice Advanced - tinyML Application

Among the XIAO series products, the Seeed Studio XIAO nRF52840 Sense has Bluetooth 5.0
wireless connectivity, low power consumption, and comes with onboard 6-axis IMU and PDM
microphone sensors. The XIAO ESP32S3 Sense further integrates a camera, digital microphone,
and SD card support. Those features make them powerful tools for TinyML (Embedded Machine
Learning) projects. TinyML solves problems in a completely different way from traditional
programming methods. This chapter will introduce readers to this cutting-edge field by walking
through the entire machine-learning workflow from data collection, training, and testing to
deployment and inference using the Edge Impulse Studio tool.

Chapter 5: Creative Experiments

Since its launch, the Seeed Studio XIAO series has been widely acclaimed for its compact size,
powerful performance, and versatile product range. The maker community has produced a
large number of projects created with XIAO. Due to space constraints, we have selected some
outstanding projects made with XIAO by our makers. These projects fully demonstrate the
powerful functions and wide applications of XIAO. Let us follow the makers’ steps, stimulate
creativity, and explore the endless possibilities of XIAO. Readers can draw inspiration from these
projects, use imagination, and explore new territories with XIAO.

Copyright Statement
This book, "XIAO: Big Power, Small Board," is published under the GNU General Public License
version 3.0 (GPL-3.0), ensuring it remains free and open for all to use, modify, and distribute. The
GPL-3.0 License is a widely respected and used free software license, guaranteeing users the
freedom to run, study, share, and modify the software. The authors, Lei Feng and Marcelo Rovai,
along with all contributors, embrace the principles of open knowledge and education, ensuring

that this valuable resource remains accessible to those who seek to
advance their skills in Arduino, TinyML, and beyond. By choosing this
license, we commit to fostering a community-driven approach to
learning and innovation. For more details on the rights and limitations
under this license, please refer to the official GPL-3.0 documentation.

Online Version and Community Feedback
To ensure that our readers always have access to the most current and enhanced version of
"XIAO: Big Power, Small Board," we have established an online version of the book available
at https://mjrovai.github.io/XIAO_Big_Power_Small_Board-ebook/. This platform not only
serves as a repository for the latest updates but also as a space for our community to engage,
offer feedback, and propose improvements. We highly encourage our readers to visit this
site regularly to check for updates, additional resources, and to become part of our growing
community of enthusiasts and professionals. Your insights and contributions are invaluable to
us, and we look forward to your active participation in enriching this resource.

https://www.gnu.org/licenses/gpl-3.0.en.html
https://mjrovai.github.io/XIAO_Big_Power_Small_Board-ebook/

8 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Chapter 1:
Introduction to Hardware and
Programming

In this unit, we will enter the world of electronics and programming and explore how to
control hardware through code. Starting with the example program, Blink, we will learn
how to light up an LED, turn the light on and off through a button, control the sound of
a passive buzzer, and so on. In each task, we will master commonly used programming
languages, such as digital input/output, analog input/output, tone and map functions,
etc., and learn the primary usage of libraries. The programs in this unit are relatively
simple. During the learning process, write the program code for each task by hand,
develop good habits, and avoid program upload failures due to errors in symbols or
unfamiliar rules.

9Chapter 1: introduction to hardware and programming

1.1
First Arduino program with Seeed Studio
XIAO: Blink

Arduino is a globally popular open-source electronic prototyping platform, including various
models of Arduino development boards and the Arduino IDE software platform. Because of
its open, convenient, and easy-to-start characteristics, it has become the first choice for many
software and hardware beginners.

With it, you can quickly complete project development and implement your ideas. To date,
Arduino has introduced various models of controllers and numerous peripheral modules, such
as sensors, actuators, expansion boards, etc. These modules can implement various exciting and
practical projects when used with Arduino.

The Seeed Studio XIAO series products we are learning about today are development boards
derived from Arduino. They belong to the Seeeduino series and are the smallest members of
this series.

1.1.1 Arduino IDE Text Editor
We need to program the hardware through the Arduino IDE text editor. If you have not installed
the Arduino IDE, go to the download page to install it: Software. The Arduino IDE (Integrated
Development Environment) is a programming software designed explicitly for Arduino. Through
it, we can write and upload different programs for Arduino hardware. When we open the
Arduino IDE software, it will create a new file named Sketch, which we can rename.

For Windows Users
The interface of the
Arduino IDE is spotless,
and can be divided into
four parts: menu bar,
toolbar, editing area,
and debug window.

https://mjrovai.github.io/XIAO_Big_Power_Small_Board-ebook/chapter_1-1.html#arduino-ide-text-editor
https://www.arduino.cc/en/software

10 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Menu bar: Includes files, edit, sketch, tools, and help, such as new, save, example programs,
select serial port, etc.

Horizontal toolbar: Contains several commonly used function buttons: verify, upload, debug,
board selection, serial plotter, and serial monitor selection.

Vertical toolbar: Contains shortcuts to the project folder, board manager, library manager,
debug, and search.

Code editing area: This is where you write program code, just as we usually type text in a
Word window. Write the program code in this area.

Serial monitor, output window: On the right side of the horizontal toolbar, you can open or
close the serial monitor window.

For MAC Users

Except for the location
of the menu bar (at the
top), which is sl ightly
different from Windows
users , a l l other tools
and experiences are the
same.

1.1.2 Adding Seeed Studio XIAO to Arduino IDE
- Attention -

Due to space limitations, all parts of this course’s program code and hardware connection
are based on Seeed Studio XIAO SAMD21. Most of the code in the book can be applied to all
products in the Seeed Studio XIAO series. If there are exceptions, they will be additionally
marked or explained for applicable hardware. If not marked, they apply to multiple
products.

We must add the Seeed Studio XIAO series products to the Arduino IDE to start our learning
journey.

• For Windows users, first, open your Arduino IDE, click “File→Preferences” in the top menu bar,
as shown in the figure, and copy the following URL into “Additional Boards Manager URLs.”

• For Mac users, first, open your Arduino IDE, click “Arduino IDE→Preferences” in the top menu
bar, as shown in the figure, and copy the following URL into “Additional Boards Manager
URLs.”

https://www.seeedstudio.com/Seeeduino-XIAO-Arduino-Microcontroller-SAMD21-Cortex-M0+-p-4426.html

11Chapter 1: introduction to hardware and programming

• For Seeed Studio XIAO SAMD21, XIAO nRF52840, and XIAO nRF52840 Sense, copy the link
address below: https://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json

• For Seeed Studio XIAO RP2040, copy the link address below: https: //github.com/
earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json

• For Seeed Studio XIAO ESP32C3, XIAO ESP32S3, copy the link address below: https://raw.
githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

If you frequently use multiple different models of XIAO at the same time, you can click on
the icon on the right side of the address bar and add all three addresses above to the board
manager, as shown in the figure below.

Next, click on "Tools → Board → Board Manager", enter the keyword Seeeduino XIAO in the
search bar, find Seeed SAMD Boards in the appeared entries, and click INSTALL.

https://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json
https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json
https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json
https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

12 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

When the installation starts, you will see an output pop-up window. After the installation is
complete, an “INSTALLED” option will appear.

- Attention -

• Enter “RP2040” in the search bar to find the installation package for Seeed XIAO RP2040.

• Enter “XIAO nrf52840” to find two installation packages: Seeed nRF52 Boards (for low-
power projects) and Seeed nRF52 mbed-enabled Boards (for higher-power TinyML
projects).

• Enter “ESP32” to find the installation package for ESP32 by Espressif Systems.

Connecting Seeed Studio XIAO to Arduino IDE
Connect XIAO to the computer with a data cable, as shown in the figure below:

Next, click on "Tools → Board", find "Seeeduino XIAO" and select it, as shown in the figure below.

13Chapter 1: introduction to hardware and programming

- Attention -

• If your development board is XIAO nRF52840, please select Seeed XIAO nrf52840.

• If your development board is XIAO nRF52840 Sense, please select Seeed XIAO nrf52840
Sense.

• If your development board is XIAO RP2040, please select Seeed XIAO RP2040.

• If your development board is XIAO ESP32C3, please select XIAO_ESP32C3.

• If your development board is XIAO ESP32S3, please select XIAO_ESP32S3.

Check if the port connection is correct; if not, select it manually.

• The serial port on Windows systems is displayed as “COM+number,” as shown in the figure
below.

• The serial port name on Mac or Linux systems is generally /dev/tty.usbmodem+number or /
dev/cu.usbmodem+number, as shown in the figure below.

Now, we can start programming XIAO through the software.

- Attention -

XIAO ESP32C3 may not be adequately recognized in Arduino IDE 2, and you need to specify
the development board and port manually.

14 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Now you can see that the development board and port are in the correct state.

When ESP32C3 is plugged into a PC with Arduino IDE 2, it may not be able to match the
correct development board automatically. As shown in the figure below, the display is not
the XIAO ESP32 development board; you need to specify manually. Select ” Other Board &
Port…” from the Port drop-down menu. Enter “xiao” in the search bar of the development
board, select the XIAO_ESP32C3 development board from the filtered list below, and confirm
after selecting the port on the right.

15Chapter 1: introduction to hardware and programming

- Reset Seeed Studio XIAO -

Sometimes when the program upload fails, the Seeed Studio XIAO port may disappear, and
we need to perform a reset operation. The reset method will be different for different models
of XIAO.

Reset of Seeed Studio XIAO SAMD21

• Connect XIAO SAMD21 to your computer.

• Open “Blink” in the Arduino IDE sample program
and click upload.

• While uploading, short circuit the RST pin in the
figure once with tweezers or a short wire.

• The reset is completed when the orange LED
flashes and lights up.

As shown in the figure below.

Reset of Seeed Studio XIAO PR2040

• Connect Seeed Studio XIAO RP2040 to your
computer.

• Press the reset button marked with “R” once, the
position is shown in the figure below.

If this does not work, hold down the Boot button
marked with “B”, connect the board to your computer
while holding down the BOOT button, and then
release it to enter the bootloader mode.

Reset of Seeed Studio XIAO nRF52840 and Sense version

• Connect Seeed Studio XIAO nRF52840 or Sense
version to your computer.

• Press the reset button marked with “RST” once, the
position is shown in the figure below.

If this does not work, you can quickly click it twice to
enter the bootloader mode.

Reset of Seeed Studio XIAO ESP32C3

• Connect Seeed Studio XIAO ESP32C3 to your
computer.

• Press the reset button marked with “R” once, the
position is shown in the figure below.

If this does not work, hold down the Boot button
marked with “B”, connect the board to your computer
while holding down the BOOT button, and then
release it to enter the bootloader mode.

Reset of Seeed Studio XIAO ESP32S3

• Connect Seeed Studio XIAO ESP32S3 to your
computer.

16 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

- Knowledge Window -

• The contents after “/* */” and “//” are comments to help you understand and manage code,
the comments will not affect the normal operation of the program;

• When writing programs, we need to use “{}” to wrap a set of codes;

• After each line of code, use “;” as an end symbol to tell the Arduino editor that this line of
code instruction is over.

• Press the reset button marked with “R” once, the
position is shown in the figure below.

If this does not work, hold down the Boot button
marked with “B”, connect the board to your computer
while holding down the BOOT button, and then release
it to enter the bootloader mode.

Structure of Arduino Programs
Now that we have the development board, how can we write programs into it to control its
functions? That’s when the Arduino IDE text editor comes in handy. We’ve already introduced
the interface functions of Arduino IDE in the introduction, it’s an important tool for writing and
uploading programs. Arduino programs consist of two basic functions:

setup()

This function is called when the program begins. Use it to initialize variables, pin modes, start
using libraries, etc. setup() runs only once each time the Arduino board is powered on or reset.

loop()

After the program in setup() is executed, the program in loop() begins to execute. The
program in loop() runs repeatedly.

17Chapter 1: introduction to hardware and programming

Digital Signals and I/O Settings
Simply put, digital signals are signals represented in binary form of 0 and 1. In Arduino, digital
signals are represented by high and low levels, high level means digital signal 1, and low level
means digital signal 0. Seeed Studio XIAO has 11 digital pins, we can set these pins to perform
the function of inputting or outputting digital signals.

In Arduino, you can use functions to set the status and function of pins. Here are the basic steps
to set pins through functions:

1. First, determine the pin number of the pin you want to control.

2. In the Arduino code, use the pinMode() function to set the function of the pin, such as
input or output. For example, to set the pin to output mode, you can use the following
code:

int ledPin = 13; // The pin to be controlled void setup() {
pinMode(ledPin, OUTPUT); // Set the pin to output mode
}

3. Once you have set the pin to output mode, you can use the digitalWrite() function
to set the status of the pin, such as setting it to high or low level. For example, to set the
pin to high level, you can use the following code:

digitalWrite(ledPin, HIGH); // Set the pin to high level

4. If you set the pin to input mode, you can use the digitalRead() function to read the
status of the pin, such as detecting whether it is high or low level. For example, to read
the status of the pin and save it to a variable, you can use the following code:

int buttonPin = 2; // The pin to read the status from
int buttonState = 0; // The variable to save the status
void setup() {
 pinMode(buttonPin, INPUT); // Set the pin to input mode
}
void loop() {
 buttonState = digitalRead(buttonPin); // Read the status of the
}

By using functions like pinMode(), digitalWrite(), and digitalRead(), you can easily set and
control the status and function of pins in Arduino.

18 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

1.1.3 Task 1: Run Blink to Make XIAO's LED Flash
Just as “Hello World” is the first section in all programming languages, “Blink” is akin to “Hello
World” in Arduino programming. It is the key to our journey in learning Arduino. Arduino
provides many example codes to help us get started quickly, and Blink is one of them. We can
select “File → Examples → 01.Basics → Blink” in the Arduino window to open the example program
Blink.

After opening the example program, you can see the following code, which implements the
effect of LED flashing. You can see that the code has orange and green color prompts, which
proves that your input is correct. Pay attention to the difference between uppercase and
lowercase.

19Chapter 1: introduction to hardware and programming

/*
 Blink

 Turns an LED on for one second, then off for one second, repeated

 Most Arduinos have an on-board LED you can control. On the UNO, MEGA and ZERO
 it is attached to digital pin 13, on MKR1000 on pin 6. LED_BUILTIN is set to
 the correct LED pin independent of which board is used.
 If you want to know what pin the on-board LED is connected to on your Arduino
 model, check the Technical Specs of your board at:
 https://www.arduino.cc/en/Main/Products

modified 8 May 2014
by Scott Fitzgerald
modified 2 Sep 2016
by Arturo Guadalupi
modified 8 Sep 2016
by Colby Newman

This example code is in the public domain.

https://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink
*/

// the setup function runs once when you press reset or power the b
void setup() {
 // initialize digital pin LED_BUILTIN as an output.
 pinMode(LED_BUILTIN, OUTPUT);
}

// the loop function runs over and over again forever
void loop() {
 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the
 delay(1000); // wait for a second
 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making t
 delay(1000); // wait for a second
}

Code Analysis

pinMode(LED_BUILTIN, OUTPUT);

The f irst thing the code does is to initialize LED_BUILTIN as an output pin in the setup()
function. Most Arduino series boards default the onboard LED to digital pin 13. The constant
LED_BUILTIN connects the onboard LED to pin 13.

digitalWrite(LED_BUILTIN, HIGH);

In the loop() function, we set the LED_BUILTIN pin to the "on" state, outputting 5V or 3.3V
voltage to this pin, which can be represented by HIGH. However, note that all I/O pins on XIAO are
3.3V. Do not input a voltage exceeding 3.3V, or it may damage the CPU.

digitalWrite(LED_BUILTIN, LOW);

What comes on must turn off. This statement sets the LED_BUILTIN pin to the "off" state,
outputting 0V voltage to this pin, which can be represented by LOW.

http://www.arduino.cc/en/Tutorial/BuiltInExamples/Blink

20 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

delay(1000);

This is a delay statement. It means that the LED can maintain the “on” or “off” state for 1 second,
because the parameter in the function is in milliseconds, so 1000 milliseconds is 1 second. After
controlling the “on” and “off” statements of the LED, a delay must be added, and the waiting
time should be the same to ensure that the LED flashes evenly.

Upload the Program
Next, we will learn how to upload the program. Use the data cable in the kit to connect XIAO to
the computer, as shown in the figure.

Choose the serial port of the development board from the “Tools” bar. For Windows users, it is
generally COM3 or a larger number. Select it as shown in the figure below.

If several ports are displayed for selection, unplug the data cable, reopen the “Tools” bar, and
the port that disappears is the XIAO port. Reconnect the circuit board and then select this
serial port. After selecting the board and the serial port, you can see the controller model and
corresponding serial port that have been set up in the lower right corner of the IDE interface.

21Chapter 1: introduction to hardware and programming

In Mac or Linux systems, the serial port name is generally /dev/tty.usbmodem+number or /dev/
cu.usbmodem+number, as shown in the figure below.

Next, we can upload the program. Before uploading, we can click the verify-button.png(verify
button) to verify whether the program is correct. If “Compilation Completed” is displayed, the
program is correct.

Click the upload-button.png (upload button), the debug window will display “Compiling
Project→Upload”. When “Upload Completed” is displayed, you can see the effect of the program
running on XIAO, as shown in the upload successful prompt window displayed on a Mac
computer.

22 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

- Attention -

When you start writing code, you will often forget the rules of uppercase and lowercase,
punctuation, and make mistakes. Therefore, try to write code by yourself instead of copying
and pasting. After the example program is successfully uploaded, try to create a new Sketch
and start manually inputting the code.

1.1.4 Task 2: Complete the Blink example by connecting an
external LED to Seeed XIAO ESP32C3 without LED

If the XIAO you have on hand is Seeed XIAO ESP32C3, since it does not have an onboard LED
available for users, in order to run the Blink program, you need to first connect an LED to the D10
pin of the board, as shown below:

- Attention -

You must connect a resistor (about 150Ω) in series
with the LED to limit the current flowing through
the LED to prevent the strong current from burning
the LED.

Then copy the following program to the Arduino IDE:

// Define the LED pin according to the pin diagram
int led = D10;

void setup() {
 // Initialize the digital pin 'led' as output
 pinMode(led, OUTPUT);
}

void loop() {
 digitalWrite(led, HIGH); // Turn the LED on
 delay(1000); // Wait for a second

23Chapter 1: introduction to hardware and programming

 digitalWrite(led, LOW); // Turn the LED off
 delay(1000); // Wait for a second
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/blob/main/code/L1_Blinks_XIAO_ESP32C3/L1_Blinks_XIAO_ESP32C3.ino

Code Analysis

int led = D10;

Seeed XIAO ESP32C3 does not have an onboard LED, so we did not preset an LED corresponding
pin in the Arduino core. Just now, we connected the LED to the D10 pin, so we need to declare it
in the program.

pinMode(led, OUTPUT);

We defined led as D10, and this step is to initialize led(D10) as an output pin.

1.1.5 Extended Exercise
Rewrite the Blink program: In the example program, the LED is on and off for 1 second each
time, so it seems to blink evenly. Try adjusting the waiting time to give the LED different blinking
effects.

Hint:

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);
}
void loop() {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(1000);
 digitalWrite(LED_BUILTIN, LOW);
 delay(500);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/blob/main/code/L1_ll_Blinks_1_en/L1_ll_Blinks_1_en.ino

For XIAO ESP32C3, we also need to modify the pin definition part of the program:

int led = D10;
void setup() {
 pinMode(led, OUTPUT);
}
void loop() {
 digitalWrite(led, HIGH);
 delay(1000);
 digitalWrite(led, LOW);
 delay(500);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/blob/main/code/L1_ll_blinks_2_en/L1_ll_blinks_2_en.ino

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/code/L1_Blinks_XIAO_ESP32C3/L1_Blinks_XIAO_ESP32C3.ino
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/code/L1_Blinks_XIAO_ESP32C3/L1_Blinks_XIAO_ESP32C3.ino
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/code/L1_ll_Blinks_1_en/L1_ll_Blinks_1_en.ino
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/code/L1_ll_Blinks_1_en/L1_ll_Blinks_1_en.ino
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/code/L1_ll_blinks_2_en/L1_ll_blinks_2_en.ino
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/code/L1_ll_blinks_2_en/L1_ll_blinks_2_en.ino

24 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

1.2
Using the Button Switch on the XIAO
Expansion Board to Control an LED Light

In the previous section, we learned how to control an LED light to blink using only the Seeed
Studio XIAO and the onboard LED light. However, there was no interaction with the external
environment, such as controlling the LED light through light or sound. In this section, we will
introduce a simple sensor - the button switch, to form an automatic control system of sensor-
controller-actuator. Before starting the task, we need to learn some basic knowledge, like what
variables are and the common program structures, so that we can better understand and run
the program.

1.2.1 Background Knowledge
In the last section, we only used the onboard LED light of the Seeed Studio XIAO without
connecting other modules. It could take quite some effort for beginners to use Dupont wires to
connect external sensors to a board the size of a thumb and also involve a breadboard. Is there a
simpler method?

Seeed Studio XIAO Expansion Board
The Seeed Studio XIAO Expansion Board, only half the size of Raspberry Pi 4, is powerful and can
quickly and easily build prototypes and projects. The board has a variety of peripherals such as
OLED, RTC, expandable memory, passive buzzer, RESET/User button, 5V servo/sensor connector,
various data interfaces… You can explore the infinite possibilities of Seeed Studio XIAO. The board
also supports CircuitPython.

All models in the Seeed Studio XIAO series have uniform specif ications and support the
Seeed Studio XIAO Grove Shield and Seeed Studio XIAO Expansion Board. The series includes
XIAO SAMD21, XIAO RP2040, XIAO nRF52840, XIAO nRF52840 Sense, XIAO ESP32C3 and XIAO
ESP32S3. The front and back function interfaces of the XIAO expansion board are shown in the
following figure:

https://www.seeedstudio.com/Seeeduino-XIAO-Expansion-board-p-4746.html
https://circuitpython.org/
https://seeedstudio.com/Grove-Shield-for-Seeeduino-XIAO-p-4621.html
https://www.seeedstudio.com/Seeeduino-XIAO-Expansion-board-p-4746.html
https://www.seeedstudio.com/Seeeduino-XIAO-Arduino-Microcontroller-SAMD21-Cortex-M0+-p-4426.html
https://www.seeedstudio.com/XIAO-RP2040-v1-0-p-5026.html
https://www.seeedstudio.com/Seeed-XIAO-BLE-nRF52840-p-5201.html
https://www.seeedstudio.com/Seeed-XIAO-BLE-Sense-nRF52840-p-5253.html
https://www.seeedstudio.com/Seeed-XIAO-ESP32C3-p-5431.html
https://www.seeedstudio.com/XIAO-ESP32S3-Sense-p-5639.html
https://www.seeedstudio.com/XIAO-ESP32S3-Sense-p-5639.html

25Chapter 1: introduction to hardware and programming

To make it easier and quicker to build projects with Seeed Studio XIAO, we equipped it with
a powerful expansion board. This board has a wealth of onboard peripherals and can quickly
connect to more electronic modules to implement various functions. The expansion board
brings out all the pins of XIAO, as shown in the pin diagram below:

In most cases, the XIAO expansion board is suitable for all Seeed Studio XIAO series products.

When we need to use the XIAO expansion board, we need to connect the XIAO development
board to the corresponding position on the expansion board, as shown in the f igure below.
Connect the pin headers on the XIAO main board to the position circled in yellow on the
expansion board. Be sure to align it before pressing down to avoid damaging the pins. After that,
we can start working on projects in combination with the expansion board.

- Attention -

Please f irst plug the Seeed Studio XIAO into the two female headers on the expansion
board, and then plug in the Type-C power supply, otherwise it will damage the Seeed Studio
XIAO and the expansion board.

26 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Three Basic Structures of Programs
The three basic structures of programs are sequential structure, selection structure, and loop
structure.

Sequential Structure

As the name suggests, the program in a sequential structure is executed
in the order of the statements. It is the most basic and simple program
structure. As shown in the figure below, the program will first execute
the operation in the S1 box, then the operation in the S2 box, and so on.

Selection Structure

In a program,sometimes we need to make judgments based on the situation to decide the next
step. For instance, the program might need to judge the light value in the current environment.
If the light value is high, indicating a bright environment, there’s no need to light up the light.
If the light value is low, indicating a dim
environment, then it’s necessary to turn on
the light. In such cases, we use a selection
structure.

As shown in the following f igures, the
selection structure will judge whether the
condition is fulfilled. If “True”, it executes S1; if
“False”, it executes S2; or if “True”, it executes
S1, if “False”, it exits the selection structure.

The if Statement

The if statement is the most common selection structure, which executes the following
statement when the given expression is true. The if statement has three structural forms as
shown in the following example. Simple branch structure: Execute when the condition is
fulfilled.

if (expression) {
 statement;
}

Dual branch structure: Execute statement1 when the condition is fulfilled, otherwise execute
statement2.

if (expression) {
 statement1;
}
else {
 statement2;
}

27Chapter 1: introduction to hardware and programming

Multi-branch structure: Use nested if statements to judge different situations.

if (expression1) {
 statement1;
}
else if (expression2) {
 statement2;
}
else if (expression3) {
 statement3;
}

 switch……case Statement

When dealing with multiple selection branches, using an “if……else” structure to write a program
can be quite lengthy. In this case, it’s much more convenient to use a switch statement. The
switch structure compares the expression in parentheses with the constants after case. If they
match, it executes the corresponding statement and exits the structure via a break statement.
If none match, it runs the statement after default. It's important to note that the expression in
parentheses after switch must be of integer or character type.

switch (expression) {
 case constant_expression1:
 statement1;
 break;
 case constant_expression2:
 statement2;
 break;
 ……
 default:
 statementn;
 break;
}

 break Statement

The break statement can only be used in a switch multi-branch selection structure and loop
structures. It is used to terminate the current program structure, allowing the program to jump
to subsequent statements for execution.

Loop Structure

A loop structure is used when a part of the program needs to be executed repeatedly, based on
given judgment conditions to determine whether to continue executing a certain operation or
exit the loop. There are three common types of loop statements:

 while Loop

The while loop is a type of “when” loop that executes the statements
in the loop body when a certain condition is met.

while (expression) {
 statement;
}

28 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

 do……while Loop

This is a type of “until” loop. The statement in the loop body is
executed once before the expression is evaluated. If the expression is
true, the loop continues.

do {
 statement;
} while (expression);

for Loop

This includes three expressions: Expression1 for initialization,
Expression2 for judgment, and Expression3 for increment.

for (Expression1; Expression2; Expression3) {
 statement;
}

In addition to the above loop statements, there are control
statements, break and continue, in the loop structure used to
prematurely end the loop or exit the loop. In this lesson, we just
need to understand these program structures. In later courses, we
will gradually master them through project examples.

1.2.2 Task 1: Control the LED on the XIAO using the button on
the XIAO expansion board

Analysis
The effect we want to achieve is that when the button is pressed, the LED lights up; when the
button is released, the LED goes off. The program is written in three steps:

• Define pins and create variables.

• Initialize and set pin status.

• Read the button status, implement condition judgment. If the button is pressed, the light is
on, otherwise, the light is off.

- Variable -

In a program, a value that can change is called a variable. For example, defining an integer
variable i as int i;. We can assign a value to the variable at the same time as we define
it, such as int i =0;. Furthermore, depending on the data type, different statements are
used to define variables, such as defining a floating point number, float x = 1.9;, and so
on. For more details, refer to the Arduino data types and constants documentation https://
www.arduino.cc/reference/en/#variables.

Writing the Program
Step 1: Define pins and create variables. The on-board button switch on the XIAO expansion

https://www.arduino.cc/reference/en/#variables.
https://www.arduino.cc/reference/en/#variables.

29Chapter 1: introduction to hardware and programming

board is D1, so we define it as pin 1 and set a variable for the button status. Note that LED_
BUILTIN will set the LED to the correct pin, so we don't need to manually define it:

const int buttonPin = 1; // The on-board button switch on the XIAO expansion board
is D1, which we define as pin 1
// If you are using XIAO RP2040, please change 1 to D1
int buttonState = 0; // buttonState is a variable to store the button status

Step 2: Set pin status. Set the LED pin to output status and the button pin to input pull-up
status. Use INPUT_PULLUP to enable internal pull-up resistors. When the button is not pressed, it
returns 1 or HIGH (high level). When the button is pressed, it returns 0 or LOW (low level).

void setup() {
 pinMode(LED_BUILTIN, OUTPUT);// Set the LED pin to output status
 pinMode(buttonPin, INPUT_PULLUP);// Set the button pin to input status
}

Step 3: Continuously read the button status. If the button is pressed, the light is on, otherwise,
the light is off. Because the on-board LED of the XIAO is negative logic, when the button is
pressed and returns 0, the LED is on; when it returns 1, the LED is off.

void loop() {
 // Read the button status and store it in the buttonState variable
 buttonState = digitalRead(buttonPin);
 // Check whether the button is pressed, if the button is pressed
 if (buttonState == HIGH) {
 // Turn on the LED:
 digitalWrite(LED_BUILTIN, HIGH);
 }
 else {
 // Turn off the LED:
 digitalWrite(LED_BUILTIN, LOW);
 }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/blob/main/code/L2_Button_XIAO_en/L2_Button_XIAO_en.ino

Uploading the Program
We upload the program
we wrote to the hardware.
First, use the data cable
in the kit to connect the
XIAO to the computer.

Note the position of the
b u t t o n s o n t h e X I A O
extensions used for testing
in the figure.

Then click the verify button to verify the program. If it is correct, click the upload button
to upload the program to the hardware. When the debugging area displays “Done

uploading.”, we can press the button to see if the LED lights up.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/code/L2_Button_XIAO_en/L2_Bu
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/code/L2_Button_XIAO_en/L2_Bu
https://create.arduino.cc/editor/mouseart/3c18e81f-8c61-4044-a6f9-abf72cd62c53/preview

30 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

- Attention -

There are two identical buttons on the expansion board. One
is the RESET button near the Type-C interface, and the other
is the user-defined button near the lithium battery interface.
Test with the one near the lithium battery interface.

1.2.3 Task 2: Use the button on the XIAO expansion board to
control the external LED on the XIAO ESP32C3

For the Seeed XIAO ESP32C3, it doesn’t have an on-board LED for users to use. To run the Blink
program, you need to first connect an LED to the D10 pin of the board as shown:

- Attention -

Be sure to add a resistor (about 150Ω) in series with
the LED to limit the current flowing through the LED
to prevent overcurrent from burning out the LED.

Then copy the following program into the Arduino
IDE:

/*
 * Button controlling external LED of XIA

Apologies for the confusion. It seems that there was an issue with quoting text from
the document. Let’s continue:

Task 2: Use the button on the XIAO expansion board to control the external LED
on the XIAO ESP32C3
For the Seeed XIAO ESP32C3, it doesn’t have an on-board LED for users to use. To ex-
ecute the Blink program, you first need to connect an LED to the board’s `D10` pin as
shown.

> ⚠️ Note: Make sure to add a resistor (about 150Ω) in series with the LED to limit
the current flowing through the LED and prevent overcurrent from burning out the LED.

Then, copy the following program into the Arduino IDE:
```cpp
/*
 * Button controlling external LED of XIAO ESP32C3
 */

const int buttonPin = 1;     // The pin number of the button
int buttonState = 0;    // Variable for reading the button status
int led = D10;  // Pin number of the LED

void setup() {
  // Initialize the LED pin as an output:
  pinMode(led, OUTPUT);
  // Initialize the button pin as an input:
  pinMode(buttonPin, INPUT_PULLUP);
}



31Chapter 1: introduction to hardware and programming

void loop() {
  // Read the state of the button:
  buttonState = digitalRead(buttonPin);
  // Check if the button is pressed. If it is, the button state is HIGH
  if (buttonState == HIGH) {
    // Turn the LED on:
    digitalWrite(led, HIGH);
  }
  else {
    // Turn the LED off:
    digitalWrite(led, LOW);
  }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L2_Button_XIAO_ESP32C3_en

Powering XIAO with an external battery
When demonstrating the effect, in addition to using a data 
cable to power the computer, you can also use an external 
lithium battery. This makes it convenient to move and do 
projects, as shown in the picture.

Expanded Exercise

Flow Chart
Before writing the program, you can first draw a flow chart of the program to help organize your 
thoughts. The common flow chart symbols are as follows:

Start/End box: Indicates the start or end of a program. 

Process box: Indicates the execution or handling of certain tasks. 

Decision box: Represents the judgment of a certain condition. 

Input/Output box: Represents the input of data or the output of results. 

Connection line: Represents the direction of the process flow.

The button-controlled LED program we implemented in this 
section is represented by the following flow chart. You can try 
drawing it yourself.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L2_Button_XIAO_ESP32C3_
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L2_Button_XIAO_ESP32C3_


32 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

1.3 
Transforming XIAO and its Expansion 
Board into a Morse Code Transmitter

Everyone knows that “SOS” is an internationally recognized emergency signal, a form of Morse 
code. Today, we will transform Seeed Studio’s XIAO into a Morse code transmitter. We will try to 
make the onboard buzzer of the expansion board send signals automatically. In addition, we will 
learn how to control the buzzer manually with a button.

1.3.1 Background Knowledge

Buzzer
A buzzer is an integrated electronic sound device that generates sound based on the input of an 
electrical signal. Buzzers are often installed on electronic products for sound generation. There 
are two types of buzzers: active (source buzzers) and passive (sourceless buzzers).

Active Buzzers: These buzzers have a simple oscillation circuit inside. When connected to a 
DC power supply, the buzzer can convert a constant DC into a certain frequency pulse signal, 
thereby driving the internal aluminum sheet to 
vibrate and make a sound. Active buzzers can 
usually only emit some fixed-pitch (frequency) 
sounds and are widely used in the sound 
devices of computers, printers, copiers, alarms, 
electronic toys, car electronics, phones, timers, 
and other electronic products.

Passive Buzzers: These buzzers work similarly 
to loudspeakers. They don’t have an internal 
oscillator and need to be connected to a 
changing current signal to work. They usually 
use different frequency square wave signals for 
driving. The sound generated by passive buzzers 
will change according to the change in input 
signal, and they can output a variety of sounds 
like speakers, not just emitting a f ixed single 
tone (frequency).

The standalone buzzer module is shown in the 
figure below.

In the Seeed Studio XIAO expansion board, 
there is an onboard passive buzzer connected 
to pin A3. We can output PWM pulse signals to 
this pin to control the buzzer.



33Chapter 1: introduction to hardware and programming

tone() and noTone() Functions

tone() Function

The tone() function can generate a fixed frequency PWM signal to drive a passive buzzer to 
make a sound, and it can define the frequency and duration of the sound.

Syntax: tone(pin, frequency);  tone(pin, frequency, duration);

Parameters: 

pin: The pin to which the buzzer is connected (in the Seeed Studio XIAO expansion board, it's 
A3).

frequency: The frequency of the sound (unit: Hz), the type allowed is unsigned integer.

duration: The duration of the sound (unit: milliseconds, this parameter is optional), the type 
allowed is unsigned long.

noTone() Function

This function is used to stop the sound of the buzzer controlled by the tone() function. If there 
is no sound generated, the function is invalid.

Syntax: noTone(pin);

Parameters:

pin: The pin to stop the sound.

Common Operators
In previous studies, we have used some operators. Next, we will learn about common types of 
operators and their usage methods.

Arithmetic Operators:                                  Comparison Operators:

Operator Explanation

= Assignment operator

+ Addition operator

- Subtraction operator

* Multiplication operator

/ Division operator

% Modulus operator

Operator Explanation

!= Not equal to

< Less than

<= Less than or equal to

== Equal to

> Greater than

>= Greater than or equal to

Boolean Operators:                                      Compound Operators:

For detailed explanations, see: https://www.arduino.cc/reference/en/

Operator Explanation

&& Logical "and"

! Logical "not"

|| Logical "or"

Operator Explanation

++ Self-increment

+= Compound addition

-- Self-decrement

-= Compound subtraction

https://www.arduino.cc/reference/en/


34 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Morse Code
Morse code is a method of expressing information in 
telecommunication, named after the inventor of the telegraph, 
Samuel Morse.

The international Morse code encodes the 26 English letters A to Z, 
some non-English letters, Arabic numbers, and a small number of 
punctuation marks and prosigns. There is no distinction between 
upper and lower case letters. Each Morse code symbol consists of 
a series of dots (·) and dashes (—). The duration of a dot is the basic 
unit of time measurement in Morse code transmission. The duration 
of a dash is three times the duration of a dot. After each dot or dash 
in a character, there is a time when the signal is absent, called a 
space, equal to the duration of a dot. For example, the standard 
emergency distress signal SOS is expressed in Morse code as shown 
in the figure below.

If it's expressed in sound, it sounds like this. 

https://files.seeedstudio.com/wiki/XIAO_Big_Power-Board-ebook-photo/chapter_1-3/sos.wav

1.3.2 Task 1: Automatic Broadcasting of "SOS"

Analysis
Automatic broadcasting means that when the control board is started, the onboard buzzer 
automatically emits the Morse code of “SOS”. The program is written in three steps:

• Define the buzzer pin

• Initialization, setting the state of the buzzer pin

• Loop the buzzer to play the Morse code of "SOS"

Let’s f irst look at how to reflect the Morse code of “SOS” through the program. If you import 
the audio file of Morse code into the audio editing software, you can see the waveform of the 
sound and the duration of each syllable, which is generally divided into long and short sounds. 
To facilitate understanding and programming, we use a binary way to mark the switch of the 
buzzer, 1 indicates the buzzer is on, 0 indicates the buzzer is off, and the gray number represents 
how long the current status needs to last. After a Morse code ends, because it needs to be 
looped, you need to leave time between the two Morse codes, here it is set to 0.8 seconds.

Source of the picture: 

https://en.wikipedia.org/wiki/
Samuel_Morse

https://files.seeedstudio.com/wiki/XIAO_Big_Power-Board-ebook-photo/chapter_1-3/sos.wav
https://en.wikipedia.org/wiki/Samuel_Morse
https://en.wikipedia.org/wiki/Samuel_Morse


35Chapter 1: introduction to hardware and programming

To emit a short sound, which corresponds to a dot in Morse code, from the buzzer, you can use 
the following code in Arduino:

tone(pinBuzzer, 200);
delay(100);
noTone(pinBuzzer);
delay(100);

In this code snippet:

• tone(pinBuzzer, 200) generates a sound at a f requency of 200 Hz on the buzzer 
connected to the pinBuzzer pin.

• delay(100) waits for 100 milliseconds. This is how long the sound lasts.

• noTone(pinBuzzer) stops the sound on the buzzer.

• The f inal delay(100) ensures there's a pause before the next sound is generated, 
representing the space between the signals.

The code you provided is a complete Arduino program for emitting the SOS Morse code signal 
using a buzzer. Here is the English explanation:

Writing the Program
Step 1: Define pins and create variables

int pinBuzzer = 3; // Define the buzzer on pin 3, if you're using XIAO RP2040/XIAO 
ESP32, change 3 to A3

Step 2: Set pin state

void setup() {
    pinMode(pinBuzzer, OUTPUT); // Set the buzzer pin to output state
}

Step 3: Loop to play "SOS" Morse code

void loop() {
    // Emit three short signals:
    for(int i = 0; i < 3; i++){
        tone(pinBuzzer, 200);
        delay(100);
        noTone(pinBuzzer);
        delay(100);
    }
    delay(200);

    // Emit three long signals:
    for(int i = 0; i < 3; i++){
        tone(pinBuzzer, 200);
        delay(300);
        noTone(pinBuzzer);
        delay(100);
    }
    delay(200);

    // Emit three short signals again:
    for(int i = 0; i < 3; i++){



36 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

        tone(pinBuzzer, 200);
        delay(100);
        noTone(pinBuzzer);
        delay(100);
    }
    delay(800); // Wait before repeating
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L3_SOS_XIAO_en

Uploading the Program

To upload the program to your hardware, connect your XIAO to your computer using the data 
cable included in the kit. After this, click on the verify button to check your program. If it 
passes verification, click on the upload button to upload the program to your hardware. 
When the debug area shows 
“Done uploading.”,  you can 
listen to the Morse code sound. 
Is it the rhythm you expected?

Note the position of the buttons 
on the XIAO extensions used for 
testing in the figure.

1.3.3 Task 2: Control the buzzer with a button
Controlling the buzzer with a button to emit Morse code can be done manually. The code logic 
is simple: use an if statement to determine if the button is pressed. If it is, then the buzzer emits 
a sound.

Analysis
The program is also written in three steps:

• Define the buzzer and button pins.

• Initialize by setting the state of the buzzer and button pins.

• Determine whether the button is pressed; if pressed, emit a sound.

Write the program
Step 1: Define the buzzer and button pins

const int buttonPin = 1; // The button is on pin 1, if you are using XIAO RP2040/
XIAO ESP32, please change 1 to D1
int pinBuzzer = 3;// The buzzer is on pin 3, if you are using XIAO RP2040/XIAO 
ESP32, please change 3 to A3

Step 2: Set the button and buzzer pin states

void setup() {
    // Set the buzzer pin as output:
    pinMode(pinBuzzer, OUTPUT);
    // Set the button pin as input:

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L3_SOS_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L3_SOS_XIAO_en


37Chapter 1: introduction to hardware and programming

    pinMode(buttonPin, INPUT_PULLUP);
}

Step 3: Check the button state, if the button is pressed, the buzzer sounds. Here, the tone() 
function is used to control the passive buzzer to make a sound.

void loop() {
    // buttonState is the button variable, read the button state and store it in the 
variable:
    int buttonState = digitalRead(buttonPin);

    // Check if the button is pressed, if the button is pressed:
    if (buttonState == LOW) {
        // The buzzer sounds with a frequency of 200, for a duration of 200 milli-
seconds
        tone(pinBuzzer, 200, 200);
    }
}

- Attention -

There are two identical buttons on the expansion board, one is the RESET button, which is 
closer to the Type-C interface, and the other is the user-defined button, which is closer to the 
lithium battery interface. When testing, press the one closer to the lithium battery interface.

The complete program is as follows:

/*
 * Button-SOS
 */
const int buttonPin = 1; // The button is on pin 1, if you are using XIAO RP2040/
XIAO ESP32, please change 1 to D1!
int pinBuzzer = 3; // The buzzer is on pin 3, if you are using XIAO RP2040/XIAO 
ESP32, please change 3 to A3!
void setup() {
  // Set the buzzer pin as output:
  pinMode(pinBuzzer, OUTPUT);
  // Set the button pin as input:
  pinMode(buttonPin, INPUT_PULLUP);
}
 
void loop() {
  // buttonState is the button variable, read the button state and store it in the 
variable:
  int buttonState = digitalRead(buttonPin);
 
  // Check if the button is pressed, if the button is pressed:
  if (buttonState == LOW) {
    // The buzzer sounds with a frequency of 200, for a duration of 200 milliseconds
    tone(pinBuzzer, 200, 200);
  }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L3_ButtonSOS_XIAO_en

https://create.arduino.cc/editor/mouseart/a09228e4-9d39-4c55-9bed-4541e05ee35c/preview 


38 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Uploading the program
We will upload the written program to the hardware. First, connect the XIAO to your computer 
using the data cable from the kit.

Next ,  cl ick (verify button) to validate the program. If there are no errors, click 
(upload button) to upload the program to the hardware. When the debug area shows “Done 
uploading.”, we can press the button on the XIAO expansion board and test whether the buzzer 
will sound.

1.3.4 Extended Exercise
The passive buzzer can emit different pitches to form a simple melody. Research how to make 
Arduino play notes through a search engine. You can open the extended exercise code to 
experience the effect of playing “Happy Birthday” with the buzzer.

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L3_HappyBirthday_en

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L3_HappyBirthday_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L3_HappyBirthday_en


39Chapter 1: introduction to hardware and programming

1.4 
Monitor Knob Value Changes with Serial 
Monitor

When we write a few lines of code to control the board to light up the LED, or to use a button 
switch to control the buzzer, we can intuitively see the working state of these external hardware. 
If it achieves our expected results, it is very fortunate. What if it doesn’t? The program compiles 
without error, where is the mistake? It would be nice if they could speak up. In this section, we 
will learn how to communicate with the computer through the serial monitor and check the 
running status and information of the program and hardware.

1.4.1 Background Knowledge

Rotary Potentiometer
The rotary potentiometer, although it doesn’t seem 
common, has a very wide range of uses in household 
appliances and industrial equipment. For example, 
the volume knob on the sound system.

The rotary potentiometer can produce an analog output value between 0 
and VCC (the voltage of the connected circuit) on its connected pins. By 
rotating the knob, you can change the output voltage value. The range of 
the knob’s angle is 300°, and the output value is 0-1023. We can use the 
rotary potentiometer to control the LED light to show brightness changes, or 
control the servo to rotate at different angles, etc.

Analog I/O
In the Arduino series of development boards, the pins with “A” in front of the pin number are 
analog input pins. We can read the analog value on these pins to achieve the effect we want.

Analog Signal 

In life, analog signals are everywhere, such as the change in sound, light, temperature, etc., the 
frequency, amplitude, etc. of the signal can change continuously with time.

So how do we read the analog value of the 
pin through the development board? The 
analog input pin has an ADC (analog-to-digital 
converter), which can convert the external 
input analog signal into a digital signal that 
the development board can recognize, thereby 
achieving the function of reading in analog 
values, i.e., it can convert a 0-5V voltage signal 
into an integer value of 0-1023.



40 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

• analogRead();

Read the value from the specified analog pin. 

Syntax: analogRead(pin);

Parameters: 

pin: The name of the analog input pin to be read.

• analogWrite();

Corresponding to analog input is analog output. We use the analogWrite() function to achieve 
this function. It should be noted that when using this function, it is only through a special way 
to output different voltages to achieve the effect of approximate analog values. This method is 
called PWM pulse width modulation, so we are writing PWM square waves to the specified pin, 
not the true analog value. 

Syntax: analogWrite(pin, value);

Parameters: 

pin: The pin to output PWM, allowed data type: int. 

value: Duty cycle, between 0-255, allowed data type: int.

- PWM Pulse Width Modulation -

Pulse width modulation (PWM) is a way to achieve analog results through digital output. 
Simply put, you can control the charging current by adjusting the period of PWM and the 
duty cycle of PWM. As shown in the figure, the voltage is switched back and forth between 
0V (low level) and 5V (high level). A switchback 
is a period. In this period, if the time of high 
voltage is 25% and the time of low voltage 
is 75%, the duty cycle is 25%, and the output 
voltage is 5V.

When we write a few lines of code to control 
the lighting of LEDs on the development 
board, or use button switches to control the 
buzzer, we can directly observe the working 
status of these external hardware. If  it 
achieves our expected results, we are lucky. 
But what if it doesn’t? The program compiles 
without errors, so where is the problem? It 
would be nice if they could talk. In this section, 
we will learn how to communicate with the 
computer, monitor the running status and 
information of the program and hardware 
through the serial monitor.

Serial Communication
When we want to communicate with other devices using XIAO, the most common method 
is serial communication. All Arduino series development boards have this functionality. As we 



41Chapter 1: introduction to hardware and programming

•  **Serial.begin();**

This function is used to open the serial port and set the data transmission rate.

Syntax: Serial.begin(speed);

Parameters: 

Serial: Serial port object.

speed: Baud rate, commonly set to values like 9600, 115200, etc.

•  **Serial.println();**

Syntax: Serial.println(val);

Parameters: 

Serial: Serial port object.

val: The value to be printed, which can be of any data type.

For example, to print “hello world!!!” to the Serial Monitor, we need to initialize the serial port in 
the setup() function and output “hello world!!!” through the serial port in the loop() function:

void setup() {
    Serial.begin(9600); // Initialize the serial port and set the data transmission 
rate to 9600
}
void loop() {
    Serial.println("hello world!!!"); // Output "hello world!!!" through the serial 
port
}

Returning to the question at the beginning of this section: when we have written the code and 
verified it to be correct, but the effect of running the code exceeds expectations or the hardware 
doesn’t respond at all, where is the problem? At this time, we can use the Serial Monitor to 
observe the data sent or received by the hardware to make a judgment. For instance, we can 
control the on-off state of an LED with a button, and we can use the Serial Monitor to check the 
returned value when the button is pressed to determine whether the button is working properly. 
Next, we will learn how to use the Serial Monitor to make the hardware “speak”.

1.4.2 Task 1: Use the Serial Monitor to Check if the Button is 
Pressed

know, computers understand binary data (like 1010). Therefore, among electronic devices, serial 
communication achieves its function by sending and receiving such data. The key component 
to implement this function is the USART (Universal Synchronous/Asynchronous Receiver 
Transmitter). In the Arduino IDE, we can observe the sent and received data through the Serial 
Monitor, and we need related serial communication functions to implement this feature.



42 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Analysis
Remember controlling the on-off state of an LED with a button? Some of the code can be 
reused. We only need to read the button on-off setting and button on-off state code, and then 
add the initialization of the serial port and the data sent to the serial port. The program writing 
still follows three steps:

• Define button pins and variables.

• Initialize the serial port, set the serial port baud rate, and set the status of the button on-off 
pin.

• Read the button state and send it to the serial port.

Write the program
Step 1: Define the button pin and variable.

const int buttonPin = 1; // Define the button switch as pin 1. If you are using XIAO 
RP2040/XIAO ESP32, please change 1 to D1
int buttonState = 0; // Define buttonState as a variable to store the button status

Step 2: Initialize the serial port, set the baud rate of the serial port, and set the button switch pin 
status.

void setup() {
    pinMode(buttonPin, INPUT_PULLUP);  // Set the button pin as input
    Serial.begin(9600); // Initialize the serial port
}

Step 3: Read the button status and send it to the serial port

void loop() {
    buttonState = digitalRead(buttonPin);  // Read the button status and store it in 
the buttonState variable
    Serial.println(buttonState); // Send the button status data to the serial port
    delay(500);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L4_ReadButton_XIAO_en

Upload the program
We will upload the written program to the hardware. First, connect the XIAO to the computer 
with the data cable from the kit.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L4_ReadButton_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L4_ReadButton_XIAO_en
https://create.arduino.cc/editor/mouseart/64d09b6f-a4cc-4948-9c48-fc5685d8f554/preview 


43Chapter 1: introduction to hardware and programming

Note the position of the buttons on the XIAO extensions used for testing in the figure.

Click  (Verify Button) in the Arduino IDE to verify the program. If the verification is correct, 
click (Upload Button) to upload the program to XIAO. When the debug area shows “Done 
uploading.”, open the serial monitor and observe the value changes printed by the serial monitor 
when the button is pressed and released. What did you find?

When we press the button on the XIAO expansion board, the serial monitor shows 0, and when 
we release the button, the serial monitor shows 1.

1.4.3 Task 2: Using the Serial Monitor to View Knob Value 
Changes

Analysis
In Task 1, the button switch is a digital input that sends out digital signals 0 and 1, while the knob 
potentiometer returns an analog signal. We need to read the rotation angle value of the knob 
potentiometer on pin A0 and send it to the serial port. The program also consists of three steps:

• Define the knob potentiometer pin and variables.

• Initialize the serial port and set the status of the knob potentiometer pin.

• Read and calculate the rotation angle value of the knob potentiometer and send it to the 
serial port.

Write the program
Step 1: Define the knob potentiometer pin and variables. Here we need to define the voltage 
value of the ADC (Analog-to-Digital Converter) and the reference voltage of the Grove module 
interface, because we will calculate the voltage changes in the circuit where the knob switch is 
connected through these voltage values.



44 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

#define ROTARY_ANGLE_SENSOR A0  // Define the rotary potentiometer interface A0
#define ADC_REF 3 // ADC reference voltage is 3V
#define GROVE_VCC 3 // Grove interface reference voltage is 3V
#define FULL_ANGLE 300 // The maximum rotation angle of the knob potentiometer is 
300°

Step 2: Initialize the serial port, set the baud rate of the serial port, and set the status of the knob 
potentiometer pin.

void setup()
{
    Serial.begin(9600);//Initialize the serial port
    pinMode(ROTARY_ANGLE_SENSOR, INPUT);//Set the rotary potentiometer pin to input 
state
}

Step 3: Read and calculate the rotational angle value of the rotary potentiometer and send 
it to the serial port. Here, we f irst need to set the data type of the voltage variable, set the 
analog value variable of the rotary potentiometer pin, and then calculate the real-time voltage. 
After calculating the real-time voltage, calculate the rotational angle value of the rotary 
potentiometer.

void loop()
{   
    float voltage;    //Variable voltage is of floating-point type
    int sensorValue = analogRead(ROTARY_ANGLE_SENSOR);    //Read the analog value at 
the rotary potentiometer pin
    voltage = (float)sensorValue*ADC_REF/1023;    //Calculate real-time voltage
    float degrees = (voltage*FULL_ANGLE)/GROVE_VCC;    //Calculate the rotation angle 
of the knob
    Serial.println("The angle between the mark and the starting position:");    //
Print characters at the serial port
    Serial.println(degrees);    //Print the rotation angle value of the rotary po-
tentiometer at the serial port
    delay(100);
}

- #define Macro Definition -

#define is a pre-processing command used for macro definitions. In Arduino, we can use 
#define to name constants. During the compilation of the program, all occurrences of the 
"macro name" will be replaced with the string in the macro definition, such as #define 
ledPin 5. During compilation, 5 will replace all uses of ledPin. Syntax: #define constant 
name constant value. The “#” symbol is mandatory, and there is no need to use the “;” 
symbol at the end of the sentence.

The complete code is as follows:

/*
 * Use the serial monitor to view the knob potentiometer
 */
#define ROTARY_ANGLE_SENSOR A0//Define the rotary potentiometer interface A0
#define ADC_REF 3 //ADC reference voltage 3V



45Chapter 1: introduction to hardware and programming

#define GROVE_VCC 3 //Reference voltage 3V
#define FULL_ANGLE 300 //The maximum rotation angle of the rotary potentiometer is 
300°
 
void setup()
{
    Serial.begin(9600);//Initialize the serial port
    pinMode(ROTARY_ANGLE_SENSOR, INPUT);//Set the rotary potentiometer pin as an in-
put
}
 
void loop()
{   
    float voltage;//Variable voltage is of floating-point type
    int sensorValue = analogRead(ROTARY_ANGLE_SENSOR);//Read the analog value at the 
rotary potentiometer pin
    voltage = (float)sensorValue*ADC_REF/1023;//Calculate real-time voltage
    float degrees = (voltage*FULL_ANGLE)/GROVE_VCC;//Calculate the rotation angle of 
the knob
    Serial.println("The angle between the mark and the starting position:");//Print 
characters at the serial port
    Serial.println(degrees);//Print the rotation angle value of the rotary potenti-
ometer at the serial port
    delay(100);
}

Get this program from Github  https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L4_ReadRotary_XIAO_en

Upload the program
After writing the program, since external sensors are used, connect the knob module to the A0 
interface using the four-color Grove cable as shown in the image below:

After connecting, connect the XIAO main control board to your computer using a data cable.

In the Arduino IDE, click on the verification button  to verify the program. If it verif ies 
correctly, click the upload button to upload the program to the hardware. When the 
debugging area shows “Done uploading.”, you can proceed. Open the serial monitor and rotate 
the knob potentiometer to observe the data changes displayed in the serial monitor. These 

changes represent the angle value of the knob.Extended Exercise

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L4_ReadRotary_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L4_ReadRotary_XIAO_en
https://create.arduino.cc/editor/mouseart/a53aa3ae-ccf4-4486-b991-abb598bb24b4/preview 


46 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

1.4.4 Extended Exercise
While observing the angle value of the knob potentiometer in the serial monitor, we find that 
the value is constantly jumping and changing. Observing through the numbers alone is not very 
intuitive. At this time, we can use the serial plotter. With it, we can plot the data that is printed 
to the Arduino’s serial port in real time. Based on the second task, close the serial monitor and 
open the “Tools → Serial Plotter” as shown in the image below:

The serial plotter draws the data obtained from the serial port into an XY axis curve chart, where 
the X-axis represents the change in time and the Y-axis represents the data obtained from the 
serial port. Through the chart, you can more intuitively see the change in data. Please give it a try.



47Chapter 1: introduction to hardware and programming

1.5 
Controlling LED and Servo with a Knob

In the last section, we learned how to use the serial monitor and observed the differences 
between digital input and analog input through it. In this section, we will further explore the use 
of analog values by combining them with a rotary potentiometer!

1.5.1 Background Knowledge

Servo and Servo Library

Servo

A servo, also known as a servo motor, is 
a DC motor with gears and a feedback 
system. We can control the servo to rotate 
to a specif ic angular position by sending 
signals to the circuit. This makes it suitable 
for electronic devices or robots that require 
precise position control.

Servo Library servo.h

When we want to control a servo using XIAO or other Arduino development boards, we can 
use the servo.h library file. It’s one of the Arduino standard libraries, which is convenient to use 
and also avoids the problem of limited PWM pin quantity. Here are the relevant functions of the 
servo library:

• Declare the library file  

#include <Servo.h>
• Create the myservo object to control the servo 

Servo myservo;
• Use the attach() function to call the signal pin 

myservo.attach();
• Use the write() function to write the angle to the servo, setting the rotation angle of the 

shaft

myservo.write();
The servo library does not need to be manually installed. You can open the example program 
"File → Examples → Servo" and check the two example programs “Knob” and “Sweep” to 
familiarize yourself with the use of the servo library.

If you can’t find Servo under Examples, you can visit https://github.com/arduino-libraries/Servo 
and add the Servo example by installing the library.

https://github.com/arduino-libraries/Servo


48 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

map() Function
The map() function is used to map a number from one range to another. That is, fromLow 
gets mapped to toLow, and fromHigh gets mapped to toHigh. It's the simplest form of linear 
mapping.

Syntax：map(value, fromLow, fromHigh, toLow, toHigh)

Parameters：

value: The number to be mapped.

fromLow: The lower limit of the current range of the value.

fromHigh: The upper limit of the current range of the value.

toLow: The lower limit of the target range of the value.

toHigh: The upper limit of the target range of the value.

Example: Map val from the range 0-1023 to 0-255.

void setup() {}
void loop() {
    int val = analogRead(0); // read the value from analog pin A0
    val = map(val, 0, 1023, 0, 255); // map val to the range 0-255
    analogWrite(9, val); // output the analog value to pin 9
}



49Chapter 1: introduction to hardware and programming

1.5.2 Task 1: Using a knob potentiometer to control the 
brightness of the onboard LED on the XIAO board

Analysis:
When using a knob potentiometer to control the LED, we need to use the map() function, 
because the analog value directly output by the knob potentiometer is 0-1023, this value is 
not the angle value of the knob rotation, we need to calculate the angle value of the knob 
potentiometer rotation first, then map this value to the brightness range of the LED 0-255 with 
the map() function. The steps to write the program are as follows:

• Define the knob potentiometer, LED pin.

• Initialize the serial port, set the status of the knob potentiometer and LED pin.

• Read and calculate the rotation angle value of the knob potentiometer, and send it to the 
serial port.

• Map the angle value of the knob potentiometer to the LED brightness value and store it in 
the brightness variable, and the LED outputs this variable value.

Writing the program
Step 1: Define the knob potentiometer, LED pin, here we need to define ADC and VCC reference 
voltage, in order to calculate the angle value of the knob potentiometer.

#define ROTARY_ANGLE_SENSOR A0 //Define rotary potentiometer interface A0
#define LEDPIN 13 //Define LED interface 13
#define ADC_REF 3 //Reference voltage 3V
#define GROVE_VCC 3 //GROVE reference voltage 3V
#define FULL_ANGLE 300 //The maximum rotation angle of the rotary potentiometer is 
300°

Step 2: Initialize the serial port, set the status of the knob potentiometer and LED pin.

void setup()
{
    Serial.begin(9600); //Initialize serial communication
    pinMode(ROTARY_ANGLE_SENSOR, INPUT); //Set the rotary potentiometer pin to input
    pinMode(LEDPIN,OUTPUT); //Set the LED pin to output 
}

Step 3: Read and calculate the rotation angle value of the knob potentiometer, and send it to 
the serial port.

void loop()
{   
    float voltage; //Variable voltage of type float
    int sensor_value = analogRead(ROTARY_ANGLE_SENSOR); //Read the analog value at 
the rotary potentiometer pin
    voltage = (float)sensor_value*ADC_REF/1023; //Calculate the real-time voltage
    float degrees = (voltage*FULL_ANGLE)/GROVE_VCC; //Calculate the angle of rotation 
of the knob
    Serial.println(“The angle between the mark and the starting position:”); //Print 
character on serial monitor
    Serial.println(degrees); //Print the rotation angle value of the rotary potenti-



50 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

ometer on the serial monitor
    delay(100);

Step 4: Map the angle value of the knob potentiometer to the LED brightness value and store it 
in the brightness variable, and the LED outputs this variable value.

//After Step 3
 int brightness; //Define brightness variable
    brightness = map(degrees, 0, FULL_ANGLE, 0, 255); //Map the rotation angle value 
of the rotary potentiometer to the brightness value of the LED and store it in the 
brightness variable
    analogWrite(LEDPIN,brightness); //Output the variable value to the LED
    delay(500);
}

The final complete code is shown below:

#define ROTARY_ANGLE_SENSOR A0 //Define rotary potentiometer interface A0
#define LEDPIN 13 //Define LED interface 13
#define ADC_REF 3 //Reference voltage 3V
#define GROVE_VCC 3 //GROVE reference voltage 3V
#define FULL_ANGLE 300 //The maximum rotation angle of the rotary potentiometer is 
300°
 
void setup()
{
    Serial.begin(9600); //Initialize serial communication
    pinMode(ROTARY_ANGLE_SENSOR, INPUT); //Set the rotary potentiometer pin to input
    pinMode(LEDPIN,OUTPUT); //Set the LED pin to output 
}
 
void loop()
{   
    float voltage; //Variable voltage of type float
    int sensor_value = analogRead(ROTARY_ANGLE_SENSOR); //Read the analog value at 
the rotary potentiometer pin
    voltage = (float)sensor_value*ADC_REF/1023; //Calculate the real-time voltage
    float degrees = (voltage*FULL_ANGLE)/GROVE_VCC; //Calculate the angle of rotation 
of the knob
    Serial.println(“The angle between the mark and the starting position:”); //Print 
character on serial monitor
    Serial.println(degrees); //Print the rotation angle value of the rotary potenti-
ometer on the serial monitor
    delay(100);
    
    int brightness; //Define brightness variable
    brightness = map(degrees, 0, FULL_ANGLE, 0, 255); //Map the rotation angle value 
of the rotary potentiometer to the brightness value of the LED and store it in the 
brightness variable
    analogWrite(LEDPIN,brightness); //Output the variable value to the LED
    delay(500);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L5_RotaryLed_XIAO_en

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L5_RotaryLed_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L5_RotaryLed_XIAO_en


51Chapter 1: introduction to hardware and programming

Uploading the Program
After writing the program, connect the rotary 
potentiometer to the A0 interface using a four-color 
Grove wire, as shown in the following figure:

Connect the XIAO main control board to your 
computer with a data cable. After connecting, 
click  (the verify button) in the Arduino IDE 
to check the program. If there are no errors, click  

(the upload button) to upload the program to 
the hardware. When the debug area shows “Done 
uploading.”, you can open the serial monitor to 
observe the rotation angle and LED brightness 
values as you rotate the potentiometer.

- Attention -

The onboard LED of the XIAO board is used in 
this example.

If you need to operate offline, you can connect a 
lithium battery to the expansion board, as shown 
in the following figure.

Controlling an External LED with a Knob on the XIAO ESP32C3
The Seeed XIAO ESP32C3 does not have an onboard LED for users. To run this program, you 
need to first connect an LED to the D10 pin of the board, as shown below:



52 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

- Attention -

Be sure to connect a resistor (about 150Ω) in series with the LED to limit the current passing 
through the LED and prevent it from being damaged by overcurrent.

Next, copy the following program into the Arduino IDE:

#define ROTARY_ANGLE_SENSOR A0 // Define rotary potentiometer interface A0
#define LEDPIN D10 // Define LED light interface 10
#define ADC_REF 3 // Reference voltage 3V
#define GROVE_VCC 3 // GROVE reference voltage 3V
#define FULL_ANGLE 300 // The maximum rotation angle of the rotary potentiometer is 
300°

void setup()
{
    Serial.begin(9600); // Initialize serial communication
    pinMode(ROTARY_ANGLE_SENSOR, INPUT); // Set the rotary potentiometer pin to in-
put mode
    pinMode(LEDPIN, OUTPUT); // Set the LED light pin to output mode 
}

void loop()
{   
    float voltage; // Define voltage variable as float
    int sensor_value = analogRead(ROTARY_ANGLE_SENSOR); // Read the analog value on 
the rotary potentiometer pin
    voltage = (float)sensor_value*ADC_REF/1023; // Calculate real-time voltage
    float degrees = (voltage*FULL_ANGLE)/GROVE_VCC; // Calculate the angle of rota-
tion of the knob
    Serial.println("The angle between the mark and the starting position:"); // 
Print string to serial port
    Serial.println(degrees); // Print the rotation angle value of the rotary poten-
tiometer to the serial port
    delay(100);

    int brightness; // Define brightness variable
    brightness = map(degrees, 0, FULL_ANGLE, 0, 255); // Map the rotary potentiome-
ter angle value to LED light brightness value and store it in the brightness vari-
able
    analogWrite(LEDPIN, brightness); // Output brightness value to LED light
    delay(500);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L5_RotaryLed_XIAO_ESP32C3_en

1.5.3 Task 2: Control a Servo Motor with a Rotary 
Potentiometer

Analysis
When controlling a servo motor with a rotary potentiometer, we can use the servo.h library and 
modify our first task slightly. The program can be divided into the following steps:

• Declare the servo library, def ine the servo rotation angle variable, def ine the rotary 

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L5_RotaryLed_XIAO_ESP32
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L5_RotaryLed_XIAO_ESP32
https://create.arduino.cc/editor/mouseart/ac99d340-d430-44d8-93d0-f1d24f3accd2/preview 


53Chapter 1: introduction to hardware and programming

potentiometer pin and voltage.

• Initialize the serial port, set the status of the rotary potentiometer and servo pins.

• Read and calculate the rotation angle value of the rotary potentiometer, send it to the serial 
port, and drive the servo to rotate according to the angle value change.

Program Writing
Step 1: Declare the servo library, define the servo rotation angle variable, define the rotary 
potentiometer pin and voltage.

#include <Servo.h>// Declare the use of the servo library
#define ROTARY_ANGLE_SENSOR A0 // Define the rotary potentiometer pin as A0
#define ADC_REF 3 // ADC reference voltage is 3V
#define GROVE_VCC 3 // GROVE module reference voltage is 3V
#define FULL_ANGLE 300 // The maximum rotation angle of the rotary potentiometer is 
300°
Servo myservo;  // Create a myservo object to control the servo
int pos = 0; // Variable to store the rotation angle of the servo

Step 2: Initialize the serial port, set the status of the rotary potentiometer and servo pins.

void setup() {
    Serial.begin(9600);// Initialize the serial port
    pinMode(ROTARY_ANGLE_SENSOR, INPUT);// Set the rotary potentiometer pin as input
    myservo.attach(5);  // The myservo signal is transmitted through pin 5, if you 
are using XIAO RP2040/XIAO ESP32, please modify 5 to D5
}

Step 3: Read and calculate the rotation angle value of the rotary potentiometer, send it to the 
serial port, and drive the servo to rotate according to the angle value change.

void loop() {
    float voltage;// Set voltage as a floating point
    int sensor_value = analogRead(ROTARY_ANGLE_SENSOR);// Read the analog value at 
the rotary potentiometer pin
    voltage = (float)sensor_value * ADC_REF / 1023;// Real-time voltage is the read 
analog value multiplied by the reference voltage divided by 1023
    float degrees = (voltage * FULL_ANGLE) / GROVE_VCC;// The rotation angle of the 
knob is the real-time voltage multiplied by the maximum rotation angle of the rotary 
potentiometer divided by the voltage value of the GROVE module interface
    Serial.println(“The angle between the mark and the starting position:”);// Print 
characters on the serial port
    Serial.println(degrees);// Print the rotation angle value of the rotary potenti-
ometer on the serial port
    delay(50);
    myservo.write(degrees); // Write the rotation angle value of the rotary potenti-
ometer into the servo
}

The final code is as follows:

#include <Servo.h>// Declare the use of the servo library
#define ROTARY_ANGLE_SENSOR A0 // Define the rotary potentiometer pin as A0
#define ADC_REF 3 // ADC reference voltage is 3V
#define GROVE_VCC 3 // GROVE module reference voltage is 3V



54 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

#define FULL_ANGLE 300 // The maximum rotation angle of the rotary potentiometer is 
300°
Servo myservo;  // Create a myservo object to control the servo
int pos = 0; // Variable to store the rotation angle of the servo

void setup() {
    Serial.begin(9600);// Initialize the serial port
    pinMode(ROTARY_ANGLE_SENSOR, INPUT);// Set the rotary potentiometer pin as input
    myservo.attach(5);  // The myservo signal is transmitted through pin 5, if you 
are using XIAO RP2040/XIAO ESP32, please modify 5 to D5
}

void loop() {
    float voltage;// Set voltage as a floating point
    int sensor_value = analogRead(ROTARY_ANGLE_SENSOR);// Read the analog value at 
the rotary potentiometer pin
    voltage = (float)sensor_value * ADC_REF / 1023;// Real-time voltage is the read 
analog value multiplied by the reference voltage divided by 1023
    float degrees = (voltage * FULL_ANGLE) / GROVE_VCC;// The rotation angle of the 
knob is the real-time voltage multiplied by the maximum rotation angle of the rotary 
potentiometer divided by the voltage value of the GROVE module interface
    Serial.println(“The angle between the mark and the starting position:”);// Print 
characters on the serial port
    Serial.println(degrees);// Print the rotation angle value of the rotary potenti-
ometer on the serial port
    delay(50);
    myservo.write(degrees); // Write the rotation angle value of the rotary potenti-
ometer into the servo
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L5_RotaryServo_XIAO_en

Upload Program
After writing the program, f irst connect the knob potentiometer and the servo to the XIAO 
expansion board as shown in the figure below. Then, connect the XIAO main control board to 
the computer with a data cable.

After the connection, click (the verify button) in the Arduino IDE to verify the program. 
If the verif ication is error-free, click (the upload button) to upload the program to the 
hardware. When the debugging area shows “Done uploading.”, you can open the serial monitor, 
rotate the knob potentiometer, and observe the changes in angle value and the movement of 
the servo. What have you found?

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L5_RotaryServo_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L5_RotaryServo_XIAO_en


55Chapter 1: introduction to hardware and programming

- Attention -

The rotation range of the servo is 0°-180°, so you will 
see in the serial monitor that when the angle value 
is greater than 180°, the servo stops rotating.

1.5.4 Extended Exercise
We have been using the LED on the XIAO board. If I 
want to use an external LED and control it with a knob 
potentiometer to create a breathing light effect, what 
should I do? The XIAO expansion board brings out two 
digital-analog Grove interfaces, and there is an A7/
D7 interface. We can connect the external LED to this 
interface, as shown in the figure:

After the connection, we can slightly modify the 
program from Task 1, changing #define LEDPIN 13 to 
#define LEDPIN 7. Upload the modified program and 
see if it can achieve our desired effect.

Get this program f rom Github https://github.com/
mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/
main/code/L5_RotaryLed_ledmodule_en

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L5_RotaryLed_ledmodule_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L5_RotaryLed_ledmodule_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L5_RotaryLed_ledmodule_en
https://create.arduino.cc/editor/mouseart/0ed1c8b8-e0a0-4ded-9ef6-2dfe6dba9fcd/preview 


56 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

1.6  
Displaying "Hello World" on OLED

In our daily life, we see displays everywhere - televisions, computers, phones, car displays, LCD 
billboards in shopping malls… Without a variety of screens, our lives would lose much of its fun. 
Of course, these screens, besides leisure and entertainment, are also indispensable tools for daily 
life. Common displays include LCD displays, OLED displays, etc. They all have their own strengths 
and weaknesses as display devices and can be applied in different fields and scenarios. The XIAO 
expansion board integrates an OLED display. In this lesson, we will learn how to use OLED to 
display text, patterns, and images.

1.6.1 Background Knowledge

OLED Display
OLED, also known as Organic Light Emitting Diode, has advantages such as self-luminous, low 
power consumption, fast response speed, high resolution, light weight, etc. Its application field is 
very wide. The XIAO expansion board integrates a 0.96 inch 128x64 pixel OLED display, which can 
be used directly without wiring. During project production, we can display time, temperature 
and humidity, and other sensor return values through the OLED display, and we can also directly 
display letters, numbers, graphics, and even patterns, achieving visual interactive effects.

How to Download and Install the U8g2_Arduino Library
A library is a collection of program codes, which encapsulates some commonly used functions 
into a file for users to call. When we use OLED displays, temperature and humidity sensors, etc., 
we need to use the corresponding libraries. Where can these libraries be downloaded and how 
to install them? We will explain using the U8g2_Arduino library file of the OLED display as an 
example. Enter the website link https://github.com/olikraus/u8g2_arduino to enter the GitHub 
page, click Code→Download ZIP to download the resource package to the local, as shown in the 
figure below. 

https://github.com/olikraus/u8g2_arduino


57Chapter 1: introduction to hardware and programming

After the download is complete, open the Arduino IDE, click Sketch→Include Library→Add .ZIP 
Library, and select the ZIP file you just downloaded.

If the library is installed correctly, you can see the prompt information for successful library 
installation in the output window. 



58 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

U8g2 Library for OLED
U8g2 is a monochrome graphics library for embedded devices, 
which supports various types of OLED displays, making it easy for 
us to write programs to achieve the desired effects. The U8g2 library 
also includes the U8x8 library, and the two libraries have different 
functions:

U8g2

Includes all graphic procedures (line/box/circle drawing); Supports various fonts, (almost) no 
restrictions on font height; Some memory in the microcontroller is needed to display.

U8x8

Only supports text (character) output; Only allows each character to use a fixed-size font (8x8 
pixels); Writes directly to the display, no buffer is needed in the microcontroller. Simply put, when 
we want the OLED display to display various fonts, graphics, patterns, and present visual content 
more flexibly, we can use the U8g2 library; when we want to display characters more directly, 
with no font requirements, just to display sensor values, time, etc., we can use the U8x8 library, 
which is more efficient. We can find many example programs in "File → Examples → U8g2", and 
familiarize ourselves with the use of the library through the example programs.

Next, we will display characters and draw circles using two libraries respectively.



59Chapter 1: introduction to hardware and programming

1.6.2 Task 1: Display Hello World! on the OLED of the XIAO 
expansion board

- Attention -

Before starting to write a program for the OLED of the XIAO expansion board, make sure 
the Arduino IDE has loaded the U8g2_Arduino library f ile. The loading method can be 
referred to the description in the “How to Download and Install Arduino Library” section of 
this lesson.

Analysis
If you just want to display “Hello World!” on the OLED, you can directly write characters with the 
U8x8 library. The steps are as follows:

• Declare the library f ile, set the constructor, and the constructor defines the display type, 
controller, RAM buffer size, and communication protocol.

• Initialize the display.

• Set the display font, set the print starting position, and output “Hello World!”.

Write the program
Step 1: Declare the library file, set the constructor, and the constructor defines the display type, 
controller, RAM buffer size, and communication protocol.

#include <Arduino.h>
#include <U8x8lib.h>//Use U8x8 library file
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE);
//Set the constructor, define the display type, controller, RAM buffer size, and com-
munication protocol, generally determine according to the used display model

Step 2: Initialize the display. After declaring the library file in the previous step, you can use the 
functions in the library to set the OLED display.

void setup(void) {
    u8x8.begin();//Initialize u8x8 library
    u8x8.setFlipMode(1);//Flip the display 180 degrees, generally numbers 0 and 1
}

Step 3: Set the display font (there are various fonts to choose from in the u8x8 library, we can 
refer to https://github.com/olikraus/u8g2/wiki/fntlist8x8 to choose), set the print starting position, 
and output “Hello World!”.

void loop(void) {
    u8x8.setFont(u8x8_font_chroma48medium8_r);//Define u8x8 font
    u8x8.setCursor(0, 0);//Set the position of the drawing cursor
    u8x8.print("Hello World!");//Draw content on OLED: Hello World！
}

The complete program is as follows:

#include <Arduino.h>
#include <U8x8lib.h>//Use U8x8 library file

https://github.com/olikraus/u8g2/wiki/fntlist8x8


60 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE);
//Set the constructor, define the display type, controller, RAM buffer size, and com-
munication protocol, generally determine according to the used display model

void setup(void) {
    u8x8.begin();//Initialize u8x8 library
    u8x8.setFlipMode(1);//Flip the display 180 degrees, generally numbers 0 and 1
}

void loop(void) {
    u8x8.setFont(u8x8_font_chroma48medium8_r);//Define u8x8 font
    u8x8.setCursor(0, 0);//Set the position of the drawing cursor
    u8x8.print("Hello World!");//Draw content on OLED: Hello World！
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L6_HelloWorld_XIAO_en

Program Upload
After the program is written, we connect the XIAO main control board to the computer interface 
using a data cable, as shown in the image below:

Click “Upload” to transfer the program to the main control board. Once the upload is complete, 
check if the OLED display shows “Hello World!”.

1.6.3 Task 2: Draw a Circle on the OLED Display

Analysis
To draw a circle on the OLED display, we need to use the U8g2 library. Programming involves 
four steps:

• Declare the U8g2 library file, determine whether to use SPI or I2C protocol, and set up the 
constructor to connect to the OLED display.

• The draw() function uses the u8g2.drawCircle function to draw a circle on the OLED.

• Initialize the U8g2 library.

• In the loop() function, call related functions to draw images on the OLED.

Program Writing
Step 1: Declare the U8g2 library file, determine whether to use SPI or I2C protocol, and set up the 
constructor to connect to the OLED display.

#include<Arduino.h>
#include<U8g2lib.h>//Use U8g2 library

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L6_HelloWorld_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L6_HelloWorld_XIAO_en
https://create.arduino.cc/editor/mouseart/5f818a08-51b4-4744-b0f0-f7a08db334e2/preview 


61Chapter 1: introduction to hardware and programming

// Determine whether to use SPI or I2C protocol
#ifdef U8X8_HAVE_HW_SPI
#include<SPI.h>
#endif
#ifdef U8X8_HAVE_HW_I2C
#include<Wire.h>
#endif

U8G2_SSD1306_128X64_NONAME_F_HW_I2C u8g2(U8G2_R0, /* reset=*/ U8X8_PIN_NONE);
// Set up the constructor, define display type, controller, RAM buffer size, and com-
munication protocol

Step 2: The draw() function uses the u8g2.drawCircle function to draw a circle on the OLED. 
The u8g2.drawCircle(x0,y0,rad,opt) function parameters are as follows:

• x0,y0: The position of the center of the circle.

• rad: Defines the size of the circle, with the diameter of the circle being 2*rad+1.

• opt: Choose a part or all of the circle.

void draw(void) { 
    u8g2.drawCircle(20, 25, 10, U8G2_DRAW_ALL);// Draw a full circle with a diameter 
of 21 at coordinates (20, 25)
}

Step 3: Initialize the U8g2 library.

void setup(void) {
    u8g2.begin();// Initialize the library
}

Step 4: In the loop() function, call related functions to draw images on the OLED. Use the 
f irstPage and nextPage functions to cycle through image content. They need to be used 
together, as shown in the program below:

void loop(void) {
    // Cycle through image display
    u8g2.firstPage();
    do {
        draw();// Use draw function
    } while( u8g2.nextPage() );

    delay(1000);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L6_DrawCircle_XIAO_en

Uploading the Program
After writing the program, connect 
the XIAO main control board to the 
computer using a data cable, as 
shown below:

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L6_DrawCircle_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L6_DrawCircle_XIAO_en
https://create.arduino.cc/editor/mouseart/523d2067-ed32-4f1c-86b4-78cd88b79317/preview 


62 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Once connected, click on the “Upload” button to upload the program to the hardware. When 
the debugging area displays “Upload Successful”, check if the OLED display screen has shown a 
circular pattern.

1.6.4 Extended Exercise
Try drawing some more complex patterns.



63Chapter 2: project practice for beginners - introduction to prototype design

Chapter 2:  
Project Practice for Beginners - 
Introduction to Prototype  
Design
This unit will delve into project practice with a few classic projects as case studies. We 
will learn how to create a quick verification prototype starting from an idea. Instead of 
analyzing code line by line as we’ve done previously, we will only explain critical steps in 
this unit. The focus will be more on the practical application of code. Arduino’s libraries 
and example programs are abundant, as are community resources.

When working on a project, we should be adept at finding these resources, referring 
to example programs, and adjusting the code according to our needs to achieve the 
desired effects more quickly. Furthermore, this unit will begin to cover how to design 
appearances based on the effects achieved by the program. We will start by repurposing 
items around us, combining these items with electronic hardware to quickly form 
prototype works.



64 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

2.1  
Introduction to Product Prototype Design

In the first unit, we’ve entered the realm of electronic hardware and programming, learning 
how to control electronic hardware through code to achieve desired effects, such as controlling 
an LED in various ways, making a buzzer sound, displaying text on an OLED screen, and more. 
Mastering this knowledge will help us turn the ideas in our minds into reality. In this section, we 
will learn about the process from an idea to a prototype and then to a product. Only when you 
have mastered this knowledge can you step into the world of product prototype design. If you 
have managed to stick with this course up to this point, there’s no doubt that you are a “maker” 
at heart. The idea of “wanting to make something on your own” keeps swirling around in your 
mind. This section will provide you with some advice on how to become a maker and guidance 
on how to create electronic product prototype designs.

2.1.1 Cultivating the Maker Mindset
Becoming an excellent maker is not just about learning hardware modules and programming 
knowledge, but also consciously cultivating some habits.

Keep it playful

Play opens us to creative ideas and new experiences. While 
we play, we engage our bodies and our mind, and we often 
engage with others. While we play, learning feels natural and 
we can take risks to do things we didn’t know we can do.

Be Curious

Ask questions – who, what, why, and how. How are things 
around you made? Who makes them and where are they 
made?

Get physical

Use your sense to experience the physical world all around you. 
What are the differences between the natural world and the 
built world?

Find a favorite tool

Tools exist for all kinds of applications. Given an area you’re interested such as bicycles or music, 
what are some of the tools, both physical and digital, that you might want to learn to use? 
Choose a new tool and share it with us.

Do something you’ve never done before

Sometimes we decide that we’re not good at something and we never try to do it. Part of the 
DIY spirit is to try something you’ve never tried before, even if you’re not particularly good at 

Dale Dougherty, the founder of 
Make: magazine, gave some advice 
on cultivating the maker mindset in 
his welcome speech at Maker Camp 
(refer to https://makercamp.com/get-
started)

https://makercamp.com/get-started
https://makercamp.com/get-started


65Chapter 2: project practice for beginners - introduction to prototype design

it. Think of it as an experiment. See if you like it. Try cooking or gardening or playing a musical 
instrument. Or try to fix something that’s broken. Share this new skill.

Make something

You might design something that solves a problem — it could be a problem for you or a problem 
for others. You might build something that’s interactive such as a play toy, or a toy car or plane. 
Paper airplane launchers are popular, as are rockets.

What are the benefits of engaging young people in making?

Here are the f ive key competencies that we identif ied as outcomes for young people who 
participate in Start Making!

1. Identify as a creator or maker. Young people develop positive attitudes toward creating 
hands-on projects.

2. Develop confidence in creative expression. Young people feel capable of bringing their ideas 
to life by designing, experimenting, iterating, and persisting through failures.

3. Acquire technical tool literacy. Young people become familiar with a variety of tools and 
technologies that they can use to make projects.

4. Become aware of STEAM. Young people become aware of ideas and concepts that bridge 
science, technology, engineering, art, and math and demonstrate curiosity to learn more.

5. Learn collaboration and networking skills. Young people actively engage in collaborating and 
helping others.

Start Making! A Guide to Engaging Young People in Maker Activities By Danielle Martin and 
Alisha Panjwani edited by Natalie Rusk

What are the attributes of a maker? What is a maker mindset?

• Makers are curious. They are explorers. They pursue projects that they personally f ind 
interesting.

• Makers are playful. They often work on projects that show a sense of whimsy.

• Makers are willing to take on risk. They aren’t afraid to try things that haven’t been done 
before.

• Makers take on responsibility. They enjoy taking on projects that can help others.

• Makers are persistent. They don’t give up easily.

• Makers are resourceful. They look for materials and inspiration in unlikely places.

• Makers share—their knowledge, their tools, and their support.

• Makers are optimistic. They believe that they can make a difference in the world.

Making Makers: Kids, Tools and the Future of Innovation By AnnMarie Thomas

2.1.2 Enlightening on Product Prototype 
Design

Author Introduction:

Wen Yanming, a post-90s female, graduated from the Chinese University of 
Hong Kong and South China University of Technology, with a master’s degree 
in law. She is a hardware product manager, an inventor, an entrepreneur, with 
over a decade of technology practice and maker experience.



66 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

2. Demand Analysis and Product Definition

Once the problem is clearly defined, we can extract unmet needs from it. Like the example 
above, the problem at that time was actually how to get to the destination faster, so the 
corresponding need was “a faster mode of transportation,” not “a faster horse.” Therefore, we 
need to be good at digging deeper from the problems we discover to f ind the real needs. 
Demand analysis generally requires an analysis of the user population and use scenarios, from 
which to derive the functions needed to solve the problem, that is, to clarify: for whom, in what 
scenarios, to achieve what functions, to gain what benefits.

Basic Process of Product Prototype Design
From idea to product prototype and then to the product, this is a process that every product 
must go through. A product prototype allows us to quickly verify ideas, functionality, and 
product feasibility in a cost-effective way, providing the basis for product testing, optimization, 
and iterative updates. Behind every successful product we see, there may have been countless 
iterations of product prototypes. Therefore, creating a good product prototype is an essential 
process and solid foundation for a successful product.

The prototypes needed for different types of products and different stages of the product are 
not the same. When we mention a product prototype, it may refer to a conceptual prototype, a 
functional prototype, a small batch production prototype, a factory hand model, etc. It should 
be noted that for electronic hardware products, the discussion here is mainly about product 
prototypes for product concepts and functional implementation.

Generally speaking, the design of a functional product prototype mainly includes the following 
processes:

1. Identify and Clarify the Problem to be Solved

Einstein once said: “Posing a problem is often more important than solving a problem.” Every 
product must exist to solve a certain problem or to provide some benefit to people. Therefore, 
identifying and clarifying the problem to be solved is a prerequisite for clarifying product design 
needs and proceeding with product design.

It is important to note that just because we have identif ied a problem does not mean we 
truly understand and accurately define this problem. For example, over 100 years ago, when 
Henry Ford, the founder of Ford Motor Company, went around asking customers what kind 
of transportation they needed, almost everyone’s answer was, “I want a faster horse.” But do 
people really just need a faster horse? If Mr. Ford had defined the problem based on this, we 
might not have had faster and more comfortable cars so quickly.



67Chapter 2: project practice for beginners - introduction to prototype design

4. Software Development and Functional Implementation

Many experienced software development engineers will draw a functional implementation 

There are many types of needs: true user needs, superficial needs, urgent needs, ordinary needs, 
high-frequency needs, low-frequency needs, and so on. All of these need to be analyzed in light 
of the actual situation, which can then inform the correct definition of the product based on 
these needs.

Every product ultimately needs to be commercialized to realize its maximum value. Therefore, 
when designing a product for the market, we also need to conduct a series of market analyses, 
including market size, sales expectations, profit analysis, payback period, input-output ratio 
analysis, and so on.

3. Hardware Selection and Assembly

For the design of electronic products, once the needs are defined, we need to find hardware that 
can implement these functional needs. When choosing hardware, the elements that generally 
need to be considered include: feasibility, level of need satisfaction, cost, volume, weight, 
performance, lifespan, appearance, etc. One of the most important abilities of an excellent 
product designer is to take into account various factors based on the product definition and 
needs, balance these factors, and make trade-offs. Often, there is no single correct answer.

Generally speaking, when we build a prototype, the first thing we should consider is creating 
a minimum viable product (MVP). Its function is to use the least resources to quickly verify the 
product and quickly improve and iterate.



68 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

flowchart before software development. 
They will draw a functional implementation 
flowchart according to the functions to 
be implemented. This can help clarify the 
software design thinking, check the function 
logic, facilitate the identification of leaks and 
deficiencies, and refer to it at any time during 
programming, ensuring they have a clear 
understanding. Therefore, regardless of the 
complexity of software function development, it 
is recommended that everyone develop a good 
habit of drawing a functional implementation 
flowchart first. It can be a simple hand-drawn 
sketch, or a professional software like Visio, 
Axure can be used to draw it.

When developing software, try to be efficient and concise. Take full advantage of the benefits of 
the open-source community and learn to use existing hardware and software resources more 
effectively. For example, many pieces of hardware or applications already have many ready-
made open-source libraries and routines. During development, you can refer to these, comply 
with the corresponding open-source agreements to use related resources, and avoid wasting 
time reinventing the wheel.

5. Prototype Testing and Optimization

After the prototype is made, we need to test it to verify its functional implementation and 
whether it meets the original design needs. This process should involve as many target users 
as possible to collect their feedback. In this way, we can better discover the defects in the 
product prototype, make remedial measures and improvements, update and iterate the design, 
and finally make a design scheme that meets user needs, laying a solid foundation for formal 
product design.

Product Prototype Practice - 
“One Meter Distance Alarm” 
Prototype
Next, let’s take the prototype manufacturing 
process of the “One Meter Distance Alarm” 
as an example to experience the product 
prototype design process.

1. Identifying and Defining the 
Problem to be Solved

At the beginning of 2020, the COVID-19 
pandemic broke out globally, the situation 
was very severe. To prevent the virus f rom 
spreading through droplets and close-
range airborne contact, governments and 
health departments around the world urged 
everyone to reduce gatherings and maintain social distancing of at least one meter whenever 
possible. However, it is not easy for everyone to constantly remember this and maintain an 



69Chapter 2: project practice for beginners - introduction to prototype design

accurate social distance of more than one meter. For children, they often forget to maintain 
distance because they are playing happily, or they have no concept of how far they should keep 
their distance. When going out, there are also some strangers who, due to a lack of epidemic 
prevention awareness, unconsciously come close to us, and we need to f ind a polite way to 
remind them.

Therefore, we have derived a question from life: How can we constantly remind people to 
maintain a social distance of more than one meter?

2. Needs Analysis and Product Definition

With the problem defined, let’s analyze the core needs that this problem triggers: an epidemic 
prevention reminder device for public use that sends out reminders when others enter within 
one meter, thus encouraging everyone to consciously maintain a one meter social distance.

Thinking further about the core needs, what kind of reminder should this be? We can think of 
the electronic products we usually use, what kind of reminders do they have? They are nothing 
more than sounds, lights, vibrations, screen text prompts, etc. Considering that the reminder 
needs to be timely, direct, and obvious, it’s not easy to see the screen clearly at a distance of 
about one meter, and the volume will be larger and the cost higher after adding a screen, so we 
do not consider adding a screen. The remaining options are sound, light, and vibration. We can 
continue to balance and choose the necessary reminder method according to the cost, volume, 
and appearance. There is no single answer here. So, based on the needs analysis process, we 
tentatively define the product as: a device that emits light and vibrates to remind when it 
detects someone entering within a one meter distance.

3. Hardware Selection and Assembly

With the product defined, we can decompose the core functional requirements:

1. Detect when a person enters within a one-meter distance

2. Alert self and others

3. Small size, easy to carry

So, what kind of hardware should be used to implement these respectively? In the process 
of product prototype implementation, we usually choose open-source hardware with low 
cost, complete information, and many routines to implement hardware functions. After 
comprehensively considering the cost, function realization, assembly difficulty, volume, software 
development resources, and other elements, I have chosen the following hardware:

Functional 
Requirements Hardware Product Function Introduction

Main Board

Seeeduino XIAO (SAMD21)

This is a mini-main control board developed 
by Seed Technology based on SAMD21. The 
volume is very mini, only 20x17.5mm, the size of 
a thumb, the interface is rich, the performance 
is strong, very suitable for the development of 
various small volume devices.



70 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Expansion 
Board

Seeed Studio Grove Base for 
XIAO

Grove Shield for Seeed Studio XIAO is a plug-
and-play Grove extension board for Seeed 
Studio XIAO series. With the on-board battery 
management chip and battery bonding pad, 
you could easily power your Seeed Studio 
XIAO with lithium battery and recharge it. 
8 Grove connectors onboard includes two 
Grove I2C and one UART. It acts as a bridge for 
Seeed Studio XIAO and Seeed’s Grove system. 
Flash SPI bonding pad allows you add Flash 
to Seeed Studio XIAO to expand its memory 
space, providing Seeed Studio XIAO with more 
possibilities.

Distance 
Detection

Grove - Time of Flight 
Distance Sensor (ToF)

There are many sensors to detect distance, most 
of which measure through ultrasound, infrared, 
lasers, etc. Among them, the Grove Time of 
Flight Distance Sensor is a new generation 
of ToF laser ranging module based on 
VL53L0X, which can provide accurate distance 
measurement up to 2 meters. The small size and 
high precision of this module made it my first 
choice.

Light Alarm

Grove - Circular LED

A Grove - Circular LED with a circle of LEDs can 
light up a white light. It is aesthetically pleasing 
and provides a larger, more noticeable light 
reminder compared to a single LED.

Vibration 
Alarm

Grove - Vibration Motor

A Grove module with a built-in vibration motor. 
It can be used plug-and-play, and it’s convenient 
to generate continuous or intermittent vibration 
reminders by controlling the digital signal.

Power Supply

3.7V lithium battery (401119)

A mini-sized 3.7V lithium battery commonly 
used for Bluetooth headset power supply. The 
model is 401119, which represents the thickness, 
width, and length of the battery as 4mm, 11mm, 
and 19mm respectively. After welding this size 
lithium battery to the lithium battery pad on the 
Grove expansion board, it can be placed directly 
in the gap between the Seeeduino XIAO and 
the Grove expansion board, making the product 
more tidy and beautiful.



71Chapter 2: project practice for beginners - introduction to prototype design

The module connection is as follows, as 
depicted in the image:

The chosen hardware modules have a great structural design, which can be directly used to 
build the distance alarm’s form factor, saving time in making a shell. Thus, the production 
method is quite simple: all that’s needed is to connect each piece of hardware to the appropriate 
interface, arrange their respective positions, and then bond them together with hot melt 
adhesive. This quickly completes the hardware connection and form factor building of a one-
meter distance alarm. The completed hardware product is as follows:

4. Software Development and Function 

Implementation

Before off icially writing the program, I planned 
the functions and logic that the software needs 
to implement and drew the following functional 
implementation flow chart using Visio:

Because Seeeduino XIAO supports Arduino IDE, I chose 
to program in the Arduino IDE. Most of the hardware 
provided by Seed Technology is open source, and 
they offer excellent documentation support for their 
products. Thus, during the programming process, I 
found the corresponding open-source hardware Wiki 
on the Seeedstudio off icial website, downloaded the 

Writing

Grove universal connection 
cable (5cm)

The Grove universal connector is a standard 
connector for the Grove system. It can be used 
conveniently plug-and-play, without soldering 
and considering the line sequence. The Grove 
line connects various sensors and actuators 
to the expansion board, making the project 
building as simple as building blocks and saving 
a lot of time. The 5cm short line is very suitable 
for space-compact product prototypes.

https://www.seeedstudio.com/


72 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

5. Prototype Testing and Optimization

After completing the prototype, it was time for testing. First, I needed to test whether the 
prototype implemented the basic functionality, i.e., whether it would sound and light an alarm 
when a person was detected within a one-meter range. Then, I had to use it in an actual scenario 
to see if the user experience was good enough. If it could meet the product’s requirements 
and definition satisfactorily, the product prototype could be deemed successful, and the next 

relevant library f iles (note: library f iles are a collection of specific functionalities provided by 
developers that can be used by simply calling them, without having to rewrite the code), and 
referred to the example routines of the used modules. I completed the program swiftly.

After the program was written and compiled successfully, I connected the Seeeduino XIAO to 
the computer via a Type-C connection and downloaded the written code to the Seeeduino 
XIAO through the Arduino IDE. Once the code was successfully uploaded, the prototype was 
completed.



73Chapter 2: project practice for beginners - introduction to prototype design

step in product development could be initiated. Of course, if issues were found during testing, 
adjustments and improvements were required, followed by retesting. This process is repeated 
until the product prototype meets the requirements, and the final scheme is determined.

Finishing the prototype is just the first step in making a successful product. The birth of each 
product requires a lot of effort, continual trial and error, and adjustment to achieve the best 
results. The final success of a product, in addition to meeting user needs, also needs to withstand 
many market tests. This requires students, when beginning to learn to make products, to always 
maintain the spirit of a craftsman, while also keeping a keen sense for the market, and learning 
knowledge beyond the product itself. There is a long way to go, and I hope everyone can stick to 
their original intentions, keep exploring, and ultimately make successful products.

The source code of the program is as follows:

#include <Grove_LED_Bar.h>
#include “Seeed_vl53l0x.h”

const int Buzzer = 8;//Vibration motor connected to D8
Grove_LED_Bar bar(0, 1, 0, LED_CIRCULAR_24);  //Grove-LED ring connected to D0 
Seeed_vl53l0x VL53L0X;  //Grove-tof distance sensor connected to IIC (D4/D5)

#if defined(ARDUINO_SAMD_VARIANT_COMPLIANCE) && defined(SerialUSB)
#define SERIAL SerialUSB
#else
#define SERIAL Serial
#endif

void setup() {
    bar.begin();

    pinMode(Buzzer, OUTPUT);
    digitalWrite(Buzzer, LOW);   // turn the Buzzer on (HIGH is the voltage level)
    // Turn off all LEDs
    bar.setBits(0x0);            

    VL53L0X_Error Status = VL53L0X_ERROR_NONE;
    SERIAL.begin(115200);
    Status = VL53L0X.VL53L0X_common_init();
    if (VL53L0X_ERROR_NONE != Status) {
        SERIAL.println(“Starting VL53L0X measurement failed!”);
        VL53L0X.print_pal_error(Status);
        while (1);
    }

    VL53L0X.VL53L0X_long_distance_ranging_init();

    if (VL53L0X_ERROR_NONE != Status) {
        SERIAL.println(“Starting VL53L0X measurement failed!”);
        VL53L0X.print_pal_error(Status);
        while (1);
    }

}

void loop() {



74 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

    VL53L0X_RangingMeasurementData_t RangingMeasurementData;
    VL53L0X_Error Status = VL53L0X_ERROR_NONE;

    memset(&RangingMeasurementData, 0, sizeof(VL53L0X_RangingMeasurementData_t));
    Status = VL53L0X.PerformSingleRangingMeasurement(&RangingMeasurementData);
    if (VL53L0X_ERROR_NONE == Status) {
        if (RangingMeasurementData.RangeMilliMeter >= 2000) {
            SERIAL.println(“Out of range!!”);
            digitalWrite(Buzzer, LOW);   // turn the Buzzer off (LOW is the voltage 
level)

            // Turn off all LEDs
            bar.setBits(0x0);

        } 
        else if (RangingMeasurementData.RangeMilliMeter <= 1000) {
            digitalWrite(Buzzer, HIGH);   // turn the Buzzer on (HIGH is the voltage 
level)
            // Turn on all LEDs
            bar.setBits(0b111111111111111111111111);

            SERIAL.print(“Distance:”);
            SERIAL.print(RangingMeasurementData.RangeMilliMeter);
            SERIAL.println(“ mm”);
        } 
        else {    
            digitalWrite(Buzzer, LOW);   // turn the Buzzer off (LOW is the voltage 
level)

            // Turn off all LEDs
            bar.setBits(0x0);

            SERIAL.print(“Distance:”);
            SERIAL.print(RangingMeasurementData.RangeMilliMeter);
            SERIAL.println(“ mm”);
        }

    }
    else {
        SERIAL.print(“Measurement failed!! Status code =”);
        SERIAL.println(Status);
        digitalWrite(Buzzer, LOW);   // turn the Buzzer off (LOW is the voltage lev-
el)

        // Turn off all LEDs
        bar.setBits(0x0);
    }

    delay(250);   

}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L7_tof_XIAO_en

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L7_tof_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L7_tof_XIAO_en


75Chapter 2: project practice for beginners - introduction to prototype design

2.2 
Smart Hygrometer and Thermometer

Thermometers and hygrometers are ubiquitous in daily life, providing real-time measurement 
of temperature and humidity in our environment. We frequently use them to measure body 
temperature when we feel feverish or unwell. The invention of these devices has brought 
tremendous convenience to our lives. Despite their size, these devices hold a great deal 
of science. In this section, we will create a smart hygrometer and thermometer using a 
temperature and humidity sensor. Do you know what a temperature and humidity sensor is and 
what it can do?

2.2.1 Background Knowledge

Temperature
Temperature is closely tied to our daily lives; it informs what clothes we wear before stepping 
out, and ensures the food or drink we consume is not too hot or too cold. When you step outside 
your home, you can sense the cold or heat, but to quantify exactly how cold or hot it is, we use 
“temperature”.

Temperature is a physical quantity that indicates the degree of coldness or hotness of an 
object. The high and low temperature of an object is a macroscopic phenomenon that reflects 
the intensity of thermal motion of the molecules that make up the object at the microscopic 
level. Hence, the temperature is a manifestation of the intensity of thermal motion of a large 
number of molecules that constitute an object. The faster the molecular motion, the higher 
the temperature, and the hotter the object; the slower the molecular motion, the lower the 
temperature, and the colder the object.

To measure temperature accurately, we need to establish a temperature unit standard and 
design corresponding temperature measurement tools.



76 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Temperature Scale

The unit standard for temperature is known as the temperature scale. Throughout the 
development of science, a variety of temperature scales have been devised, but their core 
methodology is the same: by stipulating the temperature values of certain phenomena 
or things, all other temperatures can be calibrated. Common temperature scales include 
Fahrenheit, Celsius, and Kelvin. Only f ive countries, including the United States and a few 
other English-speaking countries, still use the Fahrenheit scale. The vast majority of the world, 
including China, uses the Celsius scale. In research fields, scientists prefer to use the Kelvin scale.

• In the Fahrenheit scale, under standard atmospheric pressure, the temperature at which 
water begins to freeze is set at 32 degrees Fahrenheit and the temperature at which water 
boils is 212 degrees Fahrenheit. The scale is divided into 180 equal parts between these two 
points, with each part being one degree Fahrenheit, denoted as 1 ℉ . In the Fahrenheit scale, 
normal human body temperature is around 98 ℉ .

• In the Celsius scale, under standard atmospheric pressure, the temperature at which water 
begins to freeze is set at 0 degrees Celsius and the temperature at which water boils is 100 
degrees Celsius. The scale is divided into 100 equal parts between these two points, with 
each part being one degree Celsius, denoted as 1℃ . In the Celsius scale, normal human body 
temperature is around 36.5℃ .

• The Kelvin scale is established on the basis of absolute zero. Scientists found that there is a 
minimum temperature in the universe, -273.15℃ , which cannot be reached but only asymptotically 
approached. This minimum temperature was designated as absolute zero, and set as 0 
Kelvin, denoted as 0K. The temperature at which water begins to freeze under standard 
atmospheric pressure is set at 273.15K, and the temperature at which water boils is 373.15K. In 
the Kelvin scale, normal human body temperature is around 309.7K.

Thermometer
A thermometer is a tool for measuring temperature. Since temperature is not a physical quantity 
that can be seen directly, the measurement of temperature requires the assistance of physical 
phenomena directly related to temperature. For instance, in ancient China, there is a record of 
‘lustrous pure blue flame,’ which is measured by observing the color of the flame.

Another example is the infrared thermometer, as shown in the image to the right, which 
measures temperature through the 
radiation differences of objects at 
different temperatures. Humans, like 
other organisms, also radiate infrared 
energy around them. This energy 
typically has a wavelength of 9-13μm 
and falls within the near-infrared band 
of 0.76-100μm. Since light within this 
wavelength range is not absorbed 
by air, the surface temperature of 
the human body can be accurately 
measured by simply measuring the 
infrared energy radiated by the human 
body.  Th e  human body  in f rared 
temperature sensor is designed and 
manufactured based on this principle.



77Chapter 2: project practice for beginners - introduction to prototype design

Furthermore, the phenomenon of thermal expansion and contraction is often used in 
temperature measurement. Commonly seen thermometers and body thermometers are 
based on the principle of measuring temperature by the expansion and contraction of a liquid 
when heated or cooled. The image below shows a commonly used alcohol thermometer that 
measures temperature by the property of alcohol’s expansion and contraction with temperature. 
The winter daytime temperature displayed in the image is -17°C.

Humidity
Humidity is a physical quantity that indicates the degree of 
dryness in the atmosphere. Under a certain temperature, the 
less water vapor a certain volume of air contains, the drier 
the air; the more water vapor, the more humid the air. The 
dryness or wetness of air is called “humidity.” Weather forecasts 
typically report humidity values in terms of relative humidity, 
which is a percentage obtained by comparing the actual 
amount of water vapor in the air to the maximum amount of 
water vapor the air can hold at the same temperature.

Temperature and Humidity Sensor —— Grove Temperature and 
Humidity Sensor V2.0 (DHT20)
As the name implies, a temperature and humidity sensor is 
a sensor that can detect the temperature and humidity in 
the environment. There are many types of temperature and 
humidity sensors, and the one we chose is Grove Temperature 
and Humidity Sensor V2.0 (DHT20). This is a low-power, high-
precision, and high-stability product with a fully calibrated 
digital I2C interface and a temperature measurement range 
of -40~80°C. Temperature and humidity sensors have a wide 
range of applications in the fields of agriculture, environmental 
protection, and home life.

- Grove - Temperature and Humidity Sensor (DHT11) -

If you are using the Grove DHT11 version of the temperature 
and humidity sensor (with a blue sensor case), please refer 
to this version’s Wiki document. DHT11 is a temperature 
and humidity sensor that outputs calibrated digital signals. 
The biggest difference between it and DHT20 is their 
communication method: DHT11 uses a single-bus digital 
signal, while DHT20 uses an I2C signal.

2.2.2 Task 1: Reading Temperature and Humidity Values in the 
Serial Monitor (Based on the DHT20 model)

Adding the Grove_Temperature_And_Humidity_Sensor Library 
File
Before starting to program the Grove Temperature and Humidity Sensor with the Arduino IDE, 

http://Grove Temperature and Humidity Sensor V2.0 (DHT20)
http://Grove Temperature and Humidity Sensor V2.0 (DHT20)
https://wiki.seeedstudio.com/Grove-TemperatureAndHumidity_Sensor/
https://wiki.seeedstudio.com/Grove-TemperatureAndHumidity_Sensor/


78 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

it is necessary to add the necessary library files for the sensor. Type the library file address in 
the browser address bar: https://github.com/Seeed-Studio/Grove_Temperature_And_Humidity_
Sensor, enter the GitHub page, and click  Code→Download ZIP  to download the resource 
package  Grove_Temperature_And_Humidity_Sensor-master.zip  to your local machine, as 
shown in the image below.

Add the resource package  Grove_Temperature_And_Humidity_Sensor-master.zip  
downloaded in the previous step in the menu bar’s  Sketch→Include Library→Add.ZIP 
Library ，until you see a prompt indicating the successful loading of the library.

Opening the “DHTtester” Example
Once the library file has been successfully added, the DHT library can be used. The “DHTtester” 
example can be opened through the following path:  File→Examples→Grove Temperature And 
Humidity Sensor→DHTtester .

- Attention -

If the DHTtester example is not found in the menu after installing the library files, it can be 
viewed by closing and reopening the Arduino IDE.

After opening the example program, we can see a program like the one shown below. This 
program reads the temperature and relative humidity in the environment and displays real-time 
data in the serial monitor. Part of the example program’s code needs to be modified.

// Example testing sketch for various DHT humidity/temperature sensors
// Written by ladyada, public domain

#include “DHT.h”

// Uncomment whatever type you’re using!
//#define DHTTYPE DHT11   // DHT 11
#define DHTTYPE DHT22   // DHT 22  (AM2302)
//#define DHTTYPE DHT21   // DHT 21 (AM2301)

https://github.com/Seeed-Studio/Grove_Temperature_And_Humidity_Sensor
https://github.com/Seeed-Studio/Grove_Temperature_And_Humidity_Sensor


79Chapter 2: project practice for beginners - introduction to prototype design

//#define DHTTYPE DHT10   // DHT 10
//#define DHTTYPE DHT20   // DHT 20

/*Notice: The DHT10 and DHT20 is different from other DHT* sensor ,it uses i2c in-
terface rather than one wire*/
/*So it doesn’t require a pin.*/
#define DHTPIN 2     // what pin we’re connected to(DHT10 and DHT20 don’t need define 
it)
DHT dht(DHTPIN, DHTTYPE);   //   DHT11 DHT21 DHT22
//DHT dht(DHTTYPE);         //   DHT10 DHT20 don’t need to define Pin

// Connect pin 1 (on the left) of the sensor to +5V
// Connect pin 2 of the sensor to whatever your DHTPIN is
// Connect pin 4 (on the right) of the sensor to GROUND
// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor

#if defined(ARDUINO_ARCH_AVR)
    #define debug  Serial

#elif defined(ARDUINO_ARCH_SAMD) ||  defined(ARDUINO_ARCH_SAM)
    #define debug  SerialUSB
#else
    #define debug  Serial
#endif

void setup() {

    debug.begin(115200);
    debug.println(“DHTxx test!”);
    Wire.begin();

    /*if using WIO link,must pull up the power pin.*/
    // pinMode(PIN_GROVE_POWER, OUTPUT);
    // digitalWrite(PIN_GROVE_POWER, 1);

    dht.begin();
}

void loop() {
    float temp_hum_val[2] = {0};
    // Reading temperature or humidity takes about 250 milliseconds!
    // Sensor readings may also be up to 2 seconds ‘old’ (its a very slow sensor)

    if (!dht.readTempAndHumidity(temp_hum_val)) {
        debug.print(“Humidity: “);
        debug.print(temp_hum_val[0]);
        debug.print(“ %\t”);
        debug.print(“Temperature: “);
        debug.print(temp_hum_val[1]);
        debug.println(“ *C”);
    } else {
        debug.println(“Failed to get temprature and humidity value.”);
    }

    delay(1500);



80 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Pay attention to the document’s comments. The program above provides several types of 
temperature and humidity sensor models (DHT22 is set as default), but we need the DHT20. So, 
uncomment the part for DHT20 and delete the definitions for other unneeded sensor models. 
DHT10 and DHT20 do not require pin definitions, so the revised code after modification is as 
follows:

#include "DHT.h"
#define DHTTYPE DHT20   // DHT 20
DHT dht(DHTTYPE); 
#if defined(ARDUINO_ARCH_AVR)
#define debug  Serial

#elif defined(ARDUINO_ARCH_SAMD) ||  defined(ARDUINO_ARCH_SAM)
#define debug  Serial
#else
#define debug  Serial
#endif

void setup() {
    debug.begin(115200);
    debug.println("DHTxx test!");
    Wire.begin();
    dht.begin();
}

void loop() {
    float temp_hum_val[2] = {0};
    if (!dht.readTempAndHumidity(temp_hum_val)) {
        debug.print("Humidity: ");
        debug.print(temp_hum_val[0]);
        debug.print(" %\t");
        debug.print("Temperature: ");
        debug.print(temp_hum_val[1]);
        debug.println(" *C");
    } else {
        debug.println("Failed to get temprature and humidity value.");
    }

    delay(1500);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L8_DHTtester_DHT20_XIAO_en

After modifying the code, f irst connect the 
temperature and humidity sensor to the I2C 
interface of the XIAO expansion board, as shown 
below. Then connect the XIAO development 
board to your computer, upload the modif ied 
example program to XIAO in the Arduino IDE, 
and open the serial monitor in Arduino IDE. You 
will now be able to see the values of temperature 
and humidity. Try placing the sensor in different 
environments to observe if the temperature and 
humidity values change.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_DHTtester_DHT20_XIAO
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_DHTtester_DHT20_XIAO


81Chapter 2: project practice for beginners - introduction to prototype design

It appears the temperature and humidity sensor is functioning correctly.

Reading Temperature and Humidity Values in the Serial Monitor 
(Based on the DHT11 Sensor) 
If you are using the Grove DHT11 Temperature and Humidity Sensor with a blue casing, parts of 
the program code need to be modified as follows:

 #define DHTPIN 0  needs to be modified according to the actual pin number the sensor is 
connected to.

 #define DHTTYPE DHT11  should be set because there are different models of temperature and 
humidity sensors, and you need to choose the correct one, i.e., DHT11.

The example code after modification is shown below:

#include “DHT.h”
#define DHTTYPE DHT11   // DHT 11
#define DHTPIN 0 
DHT dht(DHTPIN, DHTTYPE); 

#if defined(ARDUINO_ARCH_AVR)
    #define debug  Serial

#elif defined(ARDUINO_ARCH_SAMD) ||  defined(ARDUINO_ARCH_SAM)
    #define debug  SerialUSB
#else
    #define debug  Serial
#endif

void setup() {
    debug.begin(115200);
    debug.println(“DHTxx test!”);



82 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

    Wire.begin();
    dht.begin();
}

void loop() {
    float temp_hum_val[2] = {0};
    if (!dht.readTempAndHumidity(temp_hum_val)) {
        debug.print(“Humidity: “);
        debug.print(temp_hum_val[0]);
        debug.print(“ %\t”);
        debug.print(“Temperature: “);
        debug.print(temp_hum_val[1]);
        debug.println(“ *C”);
    } else {
        debug.println(“Failed to get temprature and humidity value.”);
    }

    delay(1500);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L8_DHTtrster_DHT11_XIAO_en

After modifying the code, f irst connect the temperature and 
humidity sensor to the A0 port of the XIAO expansion board, as 
shown in the figure below. Then, connect the XIAO development 
board to the computer, upload the modified example program to 
XIAO in the Arduino IDE, and open the serial monitor in the Arduino 
IDE to see the values of temperature and humidity. You can place 
the temperature and humidity sensor in different environments to 
see if the temperature and humidity values will change.

2.2.3 Project Creation: Smart Temperature and Humidity Meter

Project Description
We are going to make a portable mini temperature and humidity detector that detects 
temperature and humidity values through a temperature and humidity sensor and displays the 
values on the OLED display of the XIAO expansion board. However, it is not rich enough to have 
only the display function. We can add a buzzer alarm function. When the detected temperature 
and humidity exceed a certain range, an alarm will be sounded as a reminder. The value range 
can be adjusted according to different application scenarios. For example, in a home life 
scenario, set a comfortable temperature and humidity range based on human feelings; or use it 
in plant planting places, set the temperature and humidity value range based on suitable plant 
growth, exceed the alarm, and remind people to adjust.

Program Writing
Referencing the example program above, one of the effects we want to achieve is to display 
the temperature and humidity values on the OLED display of the XIAO expansion board. The 
code for reading the temperature and humidity sensor detection values can be reused by just 

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_DHTtrster_DHT11_XIAO
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_DHTtrster_DHT11_XIAO


83Chapter 2: project practice for beginners - introduction to prototype design

changing the display medium. In combination with Section 1.6, we have learned how to display 
characters on the OLED, so we just need to add an if…else condition judgment statement to 
judge the temperature and humidity values. The program writing idea is as follows:

• Declare the DHT.h library, U8x8 library, etc., and connect the buzzer pin as a reminder to 
sound the device.

• Initialize the library file, define the buzzer pin state.

• Define temperature and humidity variables to store readings and display them on the OLED 
screen, add logical judgment, and implement buzzer alarm.

To facilitate understanding and implementation, we divide the program implementation into 
two tasks:

1. Detect temperature and humidity and display them on the OLED screen of the XIAO 
expansion board.

2. Add alarm function.

Task 1: Use the Grove DHT20 sensor to detect temperature and 
humidity and display them on the OLED screen of the XIAO 
expansion board 
Step 1: Headers, declare the library files to be called.

#include “DHT.h”
#include “DHT.h”    //Use DHT library
#include <Arduino.h>
#include <U8x8lib.h>    //Use u8x8 library
#define DHTTYPE DHT20
DHT dht(DHTTYPE);   //DHT20 does not need to define pins

U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE);  //Setup con-
structor to connect to OLED screen

Step 2: Initialize the DHT library and the u8x8 library.

void setup() { 
    Wire.begin();   //Initialize wire library, and join I2C network
    dht.begin();    //DHT starts working
    u8x8.begin();   //u8x8 starts working
    u8x8.setPowerSave(0);  //Turn off power saving mode, 1 is on, and nothing can be 
seen on the screen after power saving mode is on
    u8x8.setFlipMode(1);
}

Step 3: Define temperature and humidity variables to store readings, read temperature and 
humidity values and display them on the OLED screen. Pay attention to the coordinate positions 
of temperature and humidity display.

void loop() { 
    float temp, humi;   //Set the variables temp and humi to floating point type, rep-
resenting temperature and humidity respectively
    temp = dht.readTemperature();   //Read temperature value and store it in temp
    humi = dht.readHumidity();  //Read humidity value and store it in humi
    u8x8.setFont(u8x8_font_chroma48medium8_r);  //Set display font
    u8x8.setCursor(0, 33);  //Set the position of the drawing cursor (0,33)



84 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

    u8x8.print(“Temp:”);    //Display Temp at the position (0,33)
    u8x8.print(temp);   //Display real-time temperature value
    u8x8.print(“C”);    //Display the unit “C” of temperature
    u8x8.setCursor(0,50);
    u8x8.print(“Humidity:”);
    u8x8.print(humi);
    u8x8.print(“%”);
    u8x8.refreshDisplay();
    delay(200);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L8_dht20_tem_humi_XIAO_en

Step 4: Connect the hardware, upload the program Connect the temperature and humidity 
sensor to the I2C interface of the XIAO expansion board, as shown in the figure:

Use the data cable to connect XIAO to the computer, 
click the “upload” button in the Arduino IDE, and 
upload the program to the hardware. When the 
debugging area shows “upload successful”, you can 
observe whether the temperature and humidity 
values are displayed on the OLED screen, and you can 
hold the black part of the sensor with your palm to 
observe whether the values change.

Task 2: Add an alarm function
Step 1: Add alarm function code. The alarm function requires a buzzer to be integrated into 
the circuit, which can be facilitated using the on-board buzzer of the XIAO expansion board. 
The program needs to set the buzzer pin state, add a part for condition judgment - when the 
temperature exceeds a certain value or the humidity falls below a certain value, the buzzer will 
sound an alarm. Here, a logical expression needs to be written using the “&&” logical operator “and”.

Boolean Operators

&&: Logical AND, represents “and”,if (expression1 && expression2), only when all 
expressions in the parentheses are true will it execute the statements in if {}.

||: Logical OR, represents “or”,if (expression1 || expression2), if either of the 
expressions are satisfied, the entire expression is true, and the statements in if {} are 
executed.

!: Logical NOT, represents “not”, if (!expression1), only when the value of expression1 in 
the parentheses is false will it execute the statements in if {}.

Usage example:

When the temperature exceeds 30 or the humidity falls below 40, satisfying either condition 
will make the buzzer sound an alarm.

if (temp > 30 || humi < 40) {
    tone(buzzerPin, 200, 200);
}

The added part of the program mainly sets the buzzer and makes decisions based on 
temperature and humidity, controlling the buzzer to make a sound.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_dht20_tem_humi_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_dht20_tem_humi_XIAO_en


85Chapter 2: project practice for beginners - introduction to prototype design

// Part of the program, will not run
int buzzerPin = A3; // Connects the buzzer to pin A3

void setup() {
    pinMode(buzzerPin , OUTPUT); // Sets the buzzer pin as output
}

void loop() {
    float temp, humi;
    temp = dht.readTemperature();
    humi = dht.readHumidity();
    if (temp > 30 || humi < 40) {  // When the temperature exceeds 30 or the humidi-
ty falls below 40, satisfying either condition will make the buzzer sound an alarm.
        tone(buzzerPin, 200, 200);
    }

Add the above code to the corresponding location of the Task 1 program to realize all functions. 
The complete program is shown below:

#include "DHT.h" // Use DHT library
#include <Arduino.h>
#include <U8x8lib.h> // Use u8x8 library
#define DHTTYPE DHT20
DHT dht(DHTTYPE); // DHT20 does not require pin definition
int buzzerPin = A3;
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE); // Set construc-
tor to connect OLED display

void setup() { 
    pinMode(buzzerPin , OUTPUT); // Set buzzer pin to output mode
    Wire.begin(); // Initialize Wire library and join to I2C network
    dht.begin(); // DHT begins operation
    u8x8.begin(); // u8x8 begins operation
    u8x8.setPowerSave(0);  // Disable power save mode, 1 is enable. After enabling 
power save mode, nothing will be seen on the screen
    u8x8.setFlipMode(1);
}

void loop() { 
    float temp, humi; // Set variables temp and humi to floating point type, repre-
senting temperature and humidity respectively
    temp = dht.readTemperature(); // Read temperature value and store it in temp
    humi = dht.readHumidity(); // Read humidity value and store it in humi
    if (temp > 30 || humi < 40) {  // When the temperature is above 30 or the humid-
ity is below 40, if either condition is met, the buzzer will sound an alarm
        tone(buzzerPin, 200, 200);
    }

    u8x8.setFont(u8x8_font_chroma48medium8_r); // Set display font
    u8x8.setCursor(0, 33); // Set the position of the drawing cursor (0,33)
    u8x8.print("Temp:"); // Display "Temp:" at the position (0,33)
    u8x8.print(temp); // Then display the real-time temperature value
    u8x8.print("C"); // Then display the unit of temperature "C"
    u8x8.setCursor(0,50);
    u8x8.print("Humidity:");
    u8x8.print(humi);
    u8x8.print("%");



86 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

    u8x8.refreshDisplay();
    delay(200);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L8_dht20_alarm_XIAO_en

Step 2: Upload the program.

After writing the program, connect the XIAO main control board to the computer using a data 
cable, as shown in the image below:

After connection, click the “Verify” button to check the program. If the verification is successful, 
click the “Upload” button to upload the program to the hardware. When the debugging area 
shows “Upload Successful”, it is complete. To verify whether the alarm function runs smoothly, 
tightly grip the temperature and humidity sensor with your hand, observe the value change on 
the OLED display, and listen for the buzzer alarm when the temperature exceeds 30℃ .

Task 2-2: Use Grove DHT11 sensor to display temperature and humidity on 
the XIAO extension board’s OLED and add an alarm function.

For the Grove DHT11 sensor with a blue casing, the program is shown below:

#include "DHT.h"//Use DHT library
#include <Arduino.h>
#include <U8x8lib.h>//Use u8x8 library
#define DHTPIN 0 
#define DHTTYPE DHT11//Specify using DHT11
DHT dht(DHTPIN, DHTTYPE); 
int buzzerPin = A3;
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE);//Set constructor 
to connect OLED display

void setup() { 
  pinMode(buzzerPin , OUTPUT);//Set buzzer pin to output mode
  Wire.begin();//Initialize wire library and join to I2C network
  dht.begin();//DHT begins operation
  u8x8.begin();//u8x8 begins operation
  u8x8.setPowerSave(0);  //Disable power save mode, 1 is enable. After enabling pow-
er save mode, nothing will be seen on the screen
  u8x8.setFlipMode(1);
}

void loop() { 
  float temp, humi;//Set variables temp and humi to floating point type, representing 
temperature and humidity respectively

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_dht20_alarm_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_dht20_alarm_XIAO_en


87Chapter 2: project practice for beginners - introduction to prototype design

  temp = dht.readTemperature();//Read temperature value and store it in temp
  humi = dht.readHumidity();//Read humidity value and store it in humi
  if (temp > 30 || humi < 40) {  //When the temperature is above 30 or the humidity 
is below 40, if either condition is met, the buzzer will sound an alarm
  tone(buzzerPin, 200, 200);
  }

  u8x8.setFont(u8x8_font_chroma48medium8_r);//Set display font
  u8x8.setCursor(0, 33);//Set the position of the drawing cursor (0,33)
  u8x8.print("Temp:");//Display "Temp:" at the position (0,33)
  u8x8.print(temp);//Then display the real-time temperature value
  u8x8.print("C");//Then display the unit of temperature "C"
  u8x8.setCursor(0,50);
  u8x8.print("Humidity:");
  u8x8.print(humi);
  u8x8.print("%");
  u8x8.refreshDisplay();
  delay(200);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L8_dht11_alarm_XIAO_en

2.2.4 Appearance Design
Starting from this section, we will add the part of appearance design, beginning to explore the 
complete prototype product manufacturing. Initially, we can try to draw design sketches and 
make a simple modification with the materials at hand. Returning to the smart temperature 
and humidity meter in this section, please design the appearance of the prototype work based 
on the product characteristics and functions.

Product Name Smart Temperature and Humidity Meter

Product Features Small, portable, high sensitivity.

Product Functions Real-time display of temperature and humidity values, and emits an 
alarm when temperature and humidity values exceed the comfortable 
range.

Product Appearance (For example, made into a pendant to hang on the backpack that is 
carried around, stick on the tissue storage box in the bedroom, etc.)

Case reference

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_dht11_alarm_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L8_dht11_alarm_XIAO_en


88 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

2.3  
Surprise Gift Box Based on Light Sensor

Are you thinking about gifting a special birthday present to your friend? Instead of buying one, 
you can create it with the modules we have at hand. In this section, we are going to create 
a surprise gift box for a good friend. What kind of surprise will appear when the gift box is 
opened? What kind of modules do we need to complete such a surprise gift box? Start today’s 
class with these questions.

2.3.1 Background Knowledge

Light Sensor
Light sensors can detect the light intensity in the surrounding environment and convert 
the detected light energy into electrical energy. Light sensors are divided into types such as 
photoresistive, photodiode, and photoelectric transistor. Here, we will simply introduce two 
commonly used light sensors, photoresistive and photodiode.

Photoresistive Type

Firstly, the photoresistive type, its module will integrate a 
photoresistor, as shown below. The photoresistor is extremely 
sensitive to light, any light visible to our eyes can cause its 
reaction. High-intensity light will cause the resistance value to 
decrease, and low-intensity light will cause the resistance value 
to increase. By adjusting the resistance value in the circuit 
through the light intensity, it can control other devices, such as 
controlling the LED light on and off. 

Photodiode Type

Photodiodes,  also known as photoelectric sensors or 
photodetectors, when a beam of light hits the diode, the electrons 
in the tube will quickly scatter to form electron holes, thereby 
causing current to flow. The stronger the light, the stronger 
the current. Since the current generated by the photodiode is 
proportional to the intensity of light, it is very beneficial for light 
detection that requires a rapid change in light response. The light 
sensor we are going to use in this lesson is of this type.

Talking about the uses of light sensors, we can build a light-controlled switch through a light 
sensor, such as controlling the light on and off through a light sensor, turning off the light 
during the day, and turning on the light at night. The main purpose of the light control device 
is to save energy, improve efficiency through intelligent automation, the most common in life 
is probably the light control light, light control desk lamp, light control street lamp, highway 
tunnel lighting, etc., bringing convenience to our life and also contributing to environmental 
protection and energy conservation.



89Chapter 2: project practice for beginners - introduction to prototype design

RGB LED Strip
The project in this class is paired with an RGB LED strip. The strip 
integrates multiple color-adjustable light beads. Compared with 
a single LED, it can achieve more lighting effects and cool visual 
impacts, making it ideal for creating surprises. RGB LED strips 
come in various styles and models. The one we are going to use 
is the Grove - WS2813 RGB LED Strip, 30-bead model. We can 
control the RGB LED strip to achieve a rich lighting effect through 
programming, and build more interesting lighting projects.

2.3.2 Task 1: Light up RGB LED Strip To get started with RGB 
LED strips, start by installing and understanding its library.

Add the Adafruit_NeoPixel Library 
Before starting to program the RGB LED strip with the Arduino IDE, you need to add the 
necessary library f iles. Enter the library f ile address https://github.com/adafruit/Adafruit_
NeoPixel in the browser address bar, enter the GitHub page, click Code→Download ZIP to 
download the resource package Adafruit_NeoPixel-master.zip to your local machine.

Next, add the resource package Adafruit_NeoPixel-master.zip downloaded in the previous 
step via the menu bar Sketch→Include Library→Add .ZIP Library until you see the library 
loaded successfully.

Open the Simple Example 
You can open the simple example through the following path: File → Examples → Adafruit 
NeoPixel → simple. Once the example program is opened, we can see the following program:

// NeoPixel Ring simple sketch (c) 2013 Shae Erisson
// Released under the GPLv3 license to match the rest of the
// Adafruit NeoPixel library

#include <Adafruit_NeoPixel.h>

https://www.seeedstudio.com/Grove-WS2813-RGB-LED-Strip-Waterproof-30-LED-m-1m.html?queryID=911cd90edef42f9c9761af659c702cbc&objectID=85&indexName=bazaar_retailer_products
https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/adafruit/Adafruit_NeoPixel


90 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

#ifdef __AVR__
#include <avr/power.h> // Required for 16 MHz Adafruit Trinket
#endif

// Which pin on the Arduino is connected to the NeoPixels?
#define PIN        6 // On Trinket or Gemma, suggest changing this to 1

// How many NeoPixels are attached to the Arduino?
#define NUMPIXELS 16 // Popular NeoPixel ring size

// When setting up the NeoPixel library, we tell it how many pixels,
// and which pin to use to send signals. Note that for older NeoPixel
// strips you might need to change the third parameter -- see the
// strandtest example for more information on possible values.
Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);

#define DELAYVAL 500 // Time (in milliseconds) to pause between pixels

void setup() {
    // These lines are specifically to support the Adafruit Trinket 5V 16 MHz.
    // Any other board, you can remove this part (but no harm leaving it):
    #if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
    clock_prescale_set(clock_div_1);
    #endif
    // END of Trinket-specific code.

    pixels.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)
}

void loop() {
    pixels.clear(); // Set all pixel colors to ‘off’

    // The first NeoPixel in a strand is #0, second is 1, all the way up
    // to the count of pixels minus one.
    for(int i=0; i<NUMPIXELS; i++) { // For each pixel...

        // pixels.Color() takes RGB values, from 0,0,0 up to 255,255,255
        // Here we’re using a moderately bright green color:
        pixels.setPixelColor(i, pixels.Color(0, 150, 0));

        pixels.show();   // Send the updated pixel colors to the hardware.

        delay(DELAYVAL); // Pause before next pass through loop
    }
}

This program allows the strip to light up 30 beads (green light) in sequence. This is a simple light 
strip example, and we need to modify some parameters:

#define PIN 0, you need to modify the pin connected to the light strip according to the actual 
situation. It is connected to the A0 interface of the XIAO expansion board, so it is PIN 0.

#define NUMPIXELS 30, defines the number of LEDs in the light strip. Since the light strip has 
different models and the number of integrated beads is different, we use a light strip with 30 
beads, so it is NUMPIXELS 30.

After modifying the parameters, you can remove the English comments for a clearer view of the 
code. It occupies a large amount of space.



91Chapter 2: project practice for beginners - introduction to prototype design

#include <Adafruit_NeoPixel.h> // Header file, declaring the library
#ifdef __AVR__
#include <avr/power.h> 
#endif

#define PIN 0 // The light strip is connected to pin 0. If you are using XIAO RP2040, 
please change 0 to A0
#define NUMPIXELS 30 // The number of LED lights on the light strip
Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800); // Create a new 
light strip object, define data mode
#define DELAYVAL 500 // The interval time for each light to light up

void setup() {
    #if defined(__AVR_ATtiny85__) && (F_CPU == 16000000)
    clock_prescale_set(clock_div_1);
    #endif
    pixels.begin(); // The light strip is ready to output data
}

void loop() {
    pixels.clear(); // All beads on the light strip are turned off
    for(int i=0; i<NUMPIXELS; i++) { 
        pixels.setPixelColor(i, pixels.Color(0, 150, 0)); // Light up the beads in 
sequence, the color is green
        pixels.show(); // Display the light strip
        delay(DELAYVAL); 
    }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L9_NeoPixel30_simple_XIAO_en

In the code above, pixels.Color(0,150,0) is a function to set the color of the LED light 
strip. The numbers in the parentheses represent the three primary colors (red, green, blue) 
respectively. If it is (0,150,0), it means that the brightness of red is 0, the brightness of green is 
150, and the brightness of blue is 0. The entire light strip will show a green effect. The larger the 
number, the brighter it will be, with a maximum of 255. Next, connect the light strip to the A0/
D0 interface of the XIAO expansion board, as shown in the following figure:

Connect the XIAO main board to the computer with a data cable, and upload the program to 
the main board. After the upload is successful, observe the effect of the light strip.

The light strip can change color, flicker, and present various lighting effects such as breathing. 
We can refer to the sample program in the library: File → Example → Adafruit NeoPixel → 
buttoncycler. This sample program switches different lighting effects on the light strip through 
buttons. We can find the code for various lighting effects in it, such as flickering, rainbow lights, 
chasing, etc.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L9_NeoPixel30_simple_XI
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L9_NeoPixel30_simple_XI


92 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

2.3.3 Project Making: Surprise Gift Box

Project Description
The program for the surprise gift box wants to realize: Use a light sensor to control the on and off 
of the RGB LED light strip, just like a light-controlled lamp, but the effect is opposite. When the 
value detected by the light sensor is less than a fixed value, that is, it is in a dim environment, 
the RGB LED light strip is off. When the value detected by the light sensor is greater than a fixed 
value, that is, in a bright environment, the RGB LED light strip lights up the rainbow light.

Program Writing
The program writing idea is as follows:

• Declare the files to be called, create a new light strip object, define the sensor pin and the 
number of LEDs on the light strip.

• Initialize the light strip and set the light sensor pin mode.

• Read the light value. If the light value is greater than 100, the light strip will present a rainbow 
and breathing light effect. Otherwise, the light strip will turn off.

The program is completed in two tasks:

Task 1: Make the Light Strip Present Rainbow and Breathing 
Light Effect
Step 1: Declare the files to be called, declare the light strip object, and define the pin and the 
number of LEDs on the light strip.

#include <Adafruit_NeoPixel.h> // Header file, declaring the library
#ifdef __AVR__
#include <avr/power.h> 
#endif

#define PIXEL_PIN 0 // The light strip is connected to pin A0. If you are using XIAO 
RP2040, please change 0 to A0
#define PIXEL_COUNT 30 // The number of LED lights on the light strip
Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800);
// Declare a new light strip object and define the data mode

Step 2: Initialize the light strip.

void setup() {
    strip.begin(); // Initialize the light strip, the light strip is ready to output 
data
}

Step 3: The light strip presents a rainbow and breathing light effect. This part uses the for() 
function to present the breathing effect. For example, for( i = 0; i<5; i ++ ){} means that 
the initial value of i is 0, when i is less than 5, the statement in the loop body {} is run, each 
time the loop is run, i is incremented by 1. This loop will run 5 times.

void loop() {
    strip.clear();// Turn off all the lights on the light strip
    rainbow(10);// The light strip displays a rainbow light effect. The number in 



93Chapter 2: project practice for beginners - introduction to prototype design

the parenthesis represents the speed of the rainbow light circulation. The smaller 
the number, the faster the circulation speed
}
// The following is the code for the rainbow light effect, presenting the breathing 
light effect. This code can be found in the example program buttoncycler
void rainbow(int wait) {
    for(long firstPixelHue = 0; firstPixelHue < 3*65536; firstPixelHue += 256) {
        for(int i=0; i<strip.numPixels(); i++) { 
            int pixelHue = firstPixelHue + (i * 65536L / strip.numPixels());
            strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)));
        }
        strip.show(); // The light strip presents a light effect
        delay(wait);  // Delay
    }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L9_Rainbow_XIAO_en

Step 4 :  Connect the hardware and upload the 
program. First, connect the RGB LED light strip to the 
A0/D0 interface of the XIAO expansion board, as shown 
in the figure:

Use a data cable to connect XIAO to the computer, click the “Upload” button, and upload the 
program to the hardware. When the debugging area shows “Upload successful”, you can 
observe the light effect of the light strip.

Task 2: Adding Light Control Switch Function
Step 1: Add code.

The added function is mainly to read the light value detected by the light sensor, and use the 
if…else… statement to judge the light value. When it is greater than 100 (this value can be 
adjusted according to the actual environment), the RGB LED light strip will show a rainbow 
breathing light effect.

Part of the program added:

// This is an added part of the program, it cannot run directly
#define LIGHT_PIN 7// Define the light sensor connected to A7. If you are using XIAO 
RP2040, please change 7 to A3. If you are using XIAO BLE, please change 7 to 5
#define PIXEL_PIN 0// Define light strip. If you are using XIAO RP2040, please change 
0 to A0
int readValue = 0;// Define the variable readValue to store the light value
void setup() { 
    pinMode(LIGHT_PIN , INPUT); // Set the pin of the light sensor as input status
}
void loop() {
    readValue = analogRead(A7);// Read the analog value of the A7 pin light and 
store it in the readValue variable. If you are using XIAO RP2040, please change A7 

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L9_Rainbow_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L9_Rainbow_XIAO_en


94 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

to A3. If you are using XIAO BLE, please change A7 to A5
    if(readValue > 500){ // Condition judgment, if the light value is greater than 
500, then the light strip presents a rainbow light effect, otherwise, the light 
strip is turned off
        rainbow(10);
    }else {
        strip.clear();  
        strip.show(); 
    }
}

We add the entered statement to the corresponding position of Task 1’s program. See the 
complete program:

#include <Adafruit_NeoPixel.h>// Header file, declare library
#ifdef __AVR__
#include <avr/power.h> 
#endif
#define LIGHT_PIN 7// Define the light sensor connected to A7. If you are using XIAO 
RP2040, please change 7 to A3. If you are using XIAO BLE, please change 7 to 5
#define PIXEL_PIN 0 // The light strip is connected to the A0 pin. If you are using 
XIAO RP2040, please change 0 to A0
#define PIXEL_COUNT 30 // The number of LEDs on the light strip
int readValue = 0;// Define variable readValue to store light values
Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800);
// Declare the light strip object and define the data mode
void setup() {
  strip.begin(); // Initialize the light strip and prepare the light strip to output 
data
  pinMode(LIGHT_PIN , INPUT); // Set the pin of the light sensor to input state
}
void loop() {
  strip.clear();// Turn off all the beads on the light strip
  rainbow(10);// The light strip shows a rainbow light effect. The number in the pa-
rentheses represents the speed of the rainbow light rotation. The smaller the num-
ber, the faster the rotation speed
  readValue = analogRead(A7);// Read the analog value of the light on the A7 pin and 
store it in the readValue variable. If you are using XIAO RP2040, please change A7 
to A3. If you are using XIAO BLE, please change A7 to A5
    if(readValue > 500){ // Conditional judgment, if the light value is greater than 
500, then the light strip presents a rainbow light effect, otherwise, the light 
strip is turned off
        rainbow(10);
    }else {
        strip.clear();  
        strip.show(); 
    }
}
// The following is the code for the rainbow light effect, presenting the breathing 
light effect, this code can be found in the sample program buttoncycler
void rainbow(int wait) {
  for(long firstPixelHue = 0; firstPixelHue < 3*65536; firstPixelHue += 256) {
    for(int i=0; i<strip.numPixels(); i++) { 
      int pixelHue = firstPixelHue + (i * 65536L / strip.numPixels());
      strip.setPixelColor(i, strip.gamma32(strip.ColorHSV(pixelHue)));
    }
    strip.show(); // The light strip presents a light effect



95Chapter 2: project practice for beginners - introduction to prototype design

    delay(wait);  // Delay
  }
}

Get this program from Github https://github.com/mouseart/
XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L9_
StripLight_XIAO_en

Step 2: Connect the hardware and upload the program. 
First, connect the RGB LED light strip to the A0 interface of 
the XIAO expansion board, and connect the light sensor to 
the A7 interface, as shown in the figure below:

- Attention -

If you are using XIAO BLE, please connect the light sensor to the I2C interface of the XIAO 
expansion board.

If you are using XIAO RP2040, due to the limited number of pins exposed, you need to 
connect the SIG pin of the light sensor and the A3 pin of XIAO RP2040 with Dupont wires on 
your own.

Next, connect XIAO to your computer with a data cable, 
click the “Upload” button in the Arduino IDE to upload 
the program to the hardware. When the debugging area 
shows “Upload successful”, you can cover the light sensor 
with your hand, then release the light sensor, and observe 
the changes in the light strip. Note that because it takes 
a certain amount of time for the light strip to display light 
effects, the light strip will not turn off immediately when 
you cover the light sensor.

2.3.4 Exterior Design
Combining the program design of the surprise gift box, when the light sensor is in a dim 
environment, the RGB LED light strip is off, and when the light sensor is in a bright environment, 
the RGB LED light strip lights up with rainbow lights. We can imagine that the electronic part 
is placed in a closed box, which can match the function implemented by the program and can 
also meet the positioning of the gift. Of course, you can also have other designs.

Product Name Surprise Gift Box

Product Features
Cool light effects, 
photocontrol, surprise, 
birthday

Product Functions
Control the lighting of 
the RGB LED light strip 
with a light sensor

Product 
Appearance

Case reference

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L9_StripLight_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L9_StripLight_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L9_StripLight_XIAO_en


96 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

2.4 
Rhythmic Dance with a Triaxial 
Accelerometer

When we use smartphones or tablets, we notice that the screen display automatically flips 
depending on whether the device is vertical or horizontal. In racing or flying games, phones 
and tablets can be used as steering wheels, with turning accomplished by tilting the device. 
Increasingly popular drones, for the most part, can now fly more and more steadily by 
detecting and controlling the attitude of the aircraft. All of these feats are thanks to the triaxial 
accelerometer. In this section, we will learn to use programming to retrieve data from a triaxial 
accelerometer and use this data for display and control.

2.4.1 Background Knowledge

Triaxial Accelerometer
As people pay more and more attention to their health, an increasing number of people are 
starting to wear wristbands, pedometers, or use smartphones to record their steps, which has 
become a lifestyle habit for many. So how exactly does a pedometer work? The answer lies in a 
tiny chip called a triaxial accelerometer which is usually found in modern phones or wristbands 
and is the key component in step counting. An accelerometer is a sensor capable of measuring 
acceleration. It usually consists of a mass, a damper, an elastic element, a sensitive element, and 
an adjustment circuit. During acceleration, the sensor measures the inertial force applied to the 
mass, and uses Newton’s second law to determine acceleration. Depending on the different 
sensitive elements of the sensor, common accelerometers include capacitive, inductive, strain, 
piezoresistive, piezoelectric, and others.

The capacitive accelerometer, based 
on the principle of capacitance, is a 
common type of accelerometer and 
is indispensable in certain f ields, such 
as safety airbags, mobile devices like 
phones, etc. Capacitive accelerometers 
employ Micro -Electro -Mechanical 
Systems (MEMS) technology, which 
makes them very economical when 
mass-produced, thus ensuring low cost.

Applications of Accelerometers 
Accelerometers can help robots understand their environment. Are they climbing a hill? Or 
going downhill, or have they fallen? For balance cars or drones, accelerometers can help them 
maintain balance. In addition to everyday areas like smartphones and health wristbands, 
accelerometers have also found wide application in other fields.



97Chapter 2: project practice for beginners - introduction to prototype design

Accelerometers in seismic probe design: Seismic detectors 
are special sensors used for geological exploration and 
engineering measurements. They are sensors that convert 
ground vibration into electrical signals, turning ground 
movement caused by seismic waves into electrical signals, 
which are then converted into binary data through an analog/
digital converter, organized, stored, and processed.

Monitoring high-voltage line dancing: Currently, domestic 
monitoring of line dancing mainly adopts two main technical 
schemes: video image acquisition and motion acceleration 
measurement. The former requires high reliability and stability 
of video equipment under high-temperature, high-humidity, 
severe cold, dense fog, dust storms, and other weather 
conditions, and the effects of the video images taken will also 
be affected. Hence, it can only serve as auxiliary monitoring 
means and cannot quantitatively analyze line motion 
parameters. Using an accelerometer to monitor line dancing allows for quantitative analysis of 
the up-and-down vibration and left-right swing of transmission lines at a certain point, but it can 
only measure the amplitude and frequency of line linear motion and not accurately measure 
complex circular motion.

Automotive Safety: Accelerometers are mainly used in 
automotive safety airbags, anti-lock braking systems, 
traction control systems, and other safety features. In safety 
applications, the rapid response of the accelerometer is 
crucial. It must be quickly determined when a safety airbag 
should deploy, so the accelerometer must respond instantly. A 
sensor design that can quickly reach a stable state rather than 
continuing to vibrate can shorten the device’s response time.

Drones: Accelerometers are also key components of drone 
control, positioning, and stability.

Game Control: Accelerometers can detect changes in the tilt 
angles up, down, left, and right, so it becomes straightforward 
to control the directions of objects in games by tilting 
handheld devices forward and backward. Many new game 
console controllers and VR device controllers incorporate 
accelerometers.

Image Auto-flip: Accelerometers detect the rotation 
movements and directions of handheld devices, making the 
displayed images upright.

Compensation for GPS Navigation System Blind Spots: GPS systems determine an object’s 
location by receiving signals f rom three satellites distributed at 120 degrees. In special 
circumstances and terrains, like tunnels, dense buildings, jungle areas, GPS signals may weaken 



98 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

or even be completely lost, creating blind spots. By adding 
an accelerometer and using inertial navigation we previously 
mentioned, we can measure system dead zones. By integrating 
the accelerometer once, we change it into the speed change 
per unit time, thereby measuring the movement of an object 
in the dead zone.

Pedometer Function: Accelerometers can detect AC signals 
and object vibrations. When people walk, they produce regular 
vibrations, and the accelerometer can detect the zero crossing 
of the vibrations, thereby calculating the number of steps 
walked or run, and thus calculating the displacement moved 
by the person. Using certain formulas, we can also calculate the 
calories burned.

Image Stabilization and Shooting Stabilizers: The image 
stabilization function uses an accelerometer to detect the 
vibration/swing amplitude of handheld devices, and when 
the vibration/swing amplitude is too large, it locks the camera 
shutter to ensure the images taken are always clear. The 
shooting stabilizer uses an accelerometer to maintain the 
stability of the entire device.

Hard Drive Protection: By detecting the state of free fall with 
an accelerometer, necessary protection can be implemented 
for hard drives. It is well known that when a hard drive is 
reading data, the gap between the read/write head and the 
platter is minuscule, and even minor external vibrations can 
have severe consequences for the hard drive, leading to data 
loss. By using an accelerometer, the state of free fall can be 
detected. When the state of free fall is detected, the read/write 
head is reset to reduce the extent of hard drive damage.

Grove Three-Axis Accelerometer 
In our kit, we have a three-axis accelerometer module - Grove 
Three-Axis Accelerometer Module. This tiny, incredible three-
axis accelerometer supports I2C, SPI, and ADC GPIO interfaces, 
which means you can choose any way to connect to your 
development board. Additionally, the accelerometer can also 
monitor the surrounding temperature to adjust for errors 
caused by it.

2.4.2 Task1: Reading Values from the XYZ Axes of the Three-
Axis Accelerometer

The key to using a three-axis accelerometer for project creation is learning how to read the 
values of the X, Y, Z axes of the accelerometer.

Add the Seeed_Arduino_LIS3DHTR Library

Before starting to program the Grove Three-Axis Accelerometer with the Arduino IDE, it is 
necessary to add the required library for the sensor. Enter the library address https://github.

http://Grove Three-Axis Accelerometer Module
http://Grove Three-Axis Accelerometer Module
https://github.com/Seeed-Studio/Seeed_Arduino_LIS3DHTR
https://github.com/Seeed-Studio/Seeed_Arduino_LIS3DHTR/


99Chapter 2: project practice for beginners - introduction to prototype design

com/Seeed-Studio/Seeed_Arduino_LIS3DHTR/ in the browser address bar, enter the GitHub 
page, click Code→Download ZIP to download the resource package Seeed_Arduino_LIS3DHTR-
master.zip to local, as shown in the figure below.

Add the previously downloaded resource package Seeed_Arduino_LIS3DHTR-master.zip 
through Sketch→Include Library→Add .ZIP Library in the menu bar, until you see a library 
load successful prompt.

Open the Sample File
Similarly, you can refer to the library f ile and open the LIS3DHTR_IIC sample through 
the following path: File→Examples→Grove-3-Axis-Digital-Accelerometer-2g-to-16g-
LIS3DHTR→LIS3DHTR_IIC.

// This example use I2C.
#include “LIS3DHTR.h”
#include <Wire.h>
LIS3DHTR<TwoWire> LIS; //IIC
#define WIRE Wire

void setup()
{
  Serial.begin(115200);
  while (!Serial)
  {
  };
  LIS.begin(WIRE); //IIC init dafault :0x18
  //LIS.begin(WIRE, 0x19); //IIC init
  LIS.openTemp();  //If ADC3 is used, the temperature detection needs to be turned 
off.
  //  LIS.closeTemp();//default
  delay(100);
  //  LIS.setFullScaleRange(LIS3DHTR_RANGE_2G);
  //  LIS.setFullScaleRange(LIS3DHTR_RANGE_4G);
  //  LIS.setFullScaleRange(LIS3DHTR_RANGE_8G);
  //  LIS.setFullScaleRange(LIS3DHTR_RANGE_16G);

https://github.com/Seeed-Studio/Seeed_Arduino_LIS3DHTR/


100 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

  //  LIS.setOutputDataRate(LIS3DHTR_DATARATE_1HZ);
  //  LIS.setOutputDataRate(LIS3DHTR_DATARATE_10HZ);
  //  LIS.setOutputDataRate(LIS3DHTR_DATARATE_25HZ);
  LIS.setOutputDataRate(LIS3DHTR_DATARATE_50HZ);
  //  LIS.setOutputDataRate(LIS3DHTR_DATARATE_100HZ);
  //  LIS.setOutputDataRate(LIS3DHTR_DATARATE_200HZ);
  //  LIS.setOutputDataRate(LIS3DHTR_DATARATE_1_6KHZ);
  //  LIS.setOutputDataRate(LIS3DHTR_DATARATE_5KHZ);
  LIS.setHighSolution(true); //High solution enable
}
void loop()
{
  if (!LIS)
  {
    Serial.println(“LIS3DHTR didn’t connect.”);
    while (1)
      ;
    return;
  }
  //3 axis
  //  Serial.print(“x:”); Serial.print(LIS.getAccelerationX()); Serial.print(“  “);
  //  Serial.print(“y:”); Serial.print(LIS.getAccelerationY()); Serial.print(“  “);
  //  Serial.print(“z:”); Serial.println(LIS.getAccelerationZ());
  //ADC
  //    Serial.print(“adc1:”); Serial.println(LIS.readbitADC1());
  //    Serial.print(“adc2:”); Serial.println(LIS.readbitADC2());
  //    Serial.print(“adc3:”); Serial.println(LIS.readbitADC3());

  //temperature
  Serial.print(“temp:”);
  Serial.println(LIS.getTemperature());
  delay(500);
}

The sample program can read the values of the X, Y, Z axes of the three-axis accelerometer 
and output through the serial monitor. The sample program provides us with different setting 
choices using the “//” comment method, but you need to manually select the required parts, as 
follows:

LIS.begin(WIRE): initializes the default values, you can choose between 0×18 and 0×19, we need 
to choose LIS.begin(WIRE,0×19);.

LIS.setOutputDataRate(LIS3DHTR_DATARATE_50HZ): The accelerometer’s output rate has 
multiple choices, choose 50Hz. The three-axis accelerometer can also monitor the ambient 
temperature, we temporarily do not need to delete the related code, the complete program is as 
follows:

// This example shows the 3-axis acceleration.
#include “LIS3DHTR.h” // Declare library
#include <Wire.h>
LIS3DHTR<TwoWire> LIS; 
#define WIRE Wire // Initialize the module above using hardware I2C

void setup()
{
    Serial.begin(9600);
    while (!Serial) { }; // If you can’t open the serial monitor, the code will stop 



101Chapter 2: project practice for beginners - introduction to prototype design

here
    LIS.begin(WIRE, 0x19); // Initialize I2C with default value
    delay(100);
    LIS.setOutputDataRate(LIS3DHTR_DATARATE_50HZ); // Set the accelerometer’s output 
rate to 50Hz.
}
void loop()
{
    if (!LIS) {
        Serial.println(“LIS3DHTR didn’t connect.”);
        while (1);
        return;
    }
    // Read the values of the X, Y, Z axes from the sensor, and display them on the 
serial monitor
    Serial.print(“x:”); Serial.print(LIS.getAccelerationX()); Serial.print(“  “);
    Serial.print(“y:”); Serial.print(LIS.getAccelerationY()); Serial.print(“  “);
    Serial.print(“z:”); Serial.println(LIS.getAccelerationZ());
    delay(500);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L10_LIS3DHTR_IIC_XIAO_en

Next, connect the three-axis accelerometer to the I2C 
interface. There are two I2C interfaces on the XIAO expansion 
board, as shown in the picture below:

Monitor Data Changes via Serial Monitor 
Connect XIAO to your computer with a data cable, upload the program, wait for the program to 
upload successfully, then open the serial monitor. Move the three-axis accelerometer in the X, Y, 
Z axis direction and observe the changes in the readings.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L10_LIS3DHTR_IIC_XIAO_e
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L10_LIS3DHTR_IIC_XIAO_e


102 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Monitor Data Changes with Serial Plotter 
The numerical way of presenting the changes in the accelerometer’s 3-axis values is not very 
intuitive. You can open the serial plotter, as shown in the picture below.

2.4.3 Project Production: Rhythmic Dance

Project Description
We can add an RGB LED strip in the project to achieve cool light effects changes. The three-axis 
accelerometer is used to detect movement, and different light effects are triggered based on 
different values on the X, Y, Z axes of the accelerometer.

Program Writing
To control the RGB LED strip to change the light effects via the three-axis accelerometer, follow 
these steps:

• Declare the library files that need to be invoked, define the strip pin and LED quantity.

• Initialize the three-axis accelerometer and the strip.

• Set the light effect of the strip to red, green and blue flashing, set the conditional judgment, 
and control the change by different value intervals on the X, Y, Z axis of the three-axis 
accelerometer.

Task: Control RGB LED Strip to Change Light Effects via Three-
Axis Accelerometer
Step 1: Declare the library files that need to be invoked, define the strip pin and the number of 
LEDs.

#include "LIS3DHTR.h" // Declare the library file of the three-axis accelerometer
#include <Adafruit_NeoPixel.h> // Declare the strip's library file
#ifdef __AVR__



103Chapter 2: project practice for beginners - introduction to prototype design

#include <avr/power.h> 
#endif
// Below are to initialize the module using software I2C or hardware I2C
#ifdef SOFTWAREWIRE
#include <SoftwareWire.h>
SoftwareWire myWire(3, 2);
LIS3DHTR<SoftwareWire> LIS; 
#define WIRE myWire
#else
#include <Wire.h>
LIS3DHTR<TwoWire> LIS;    
#define WIRE Wire
#endif

#define PIXEL_PIN 0 // Define the pin of the strip, if you use XIAO RP2040/XIAO ESP32, 
please modify 0 to A0
#define PIXEL_COUNT 30 // Define the number of LEDs in the strip as 30
Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800); // Declare 
the strip object, set the data type

Step 2: Initialize the three-axis accelerometer and the strip. Here, you need to initialize the 
accelerometer and set the rate to 50HZ.

void setup() { 
    Serial.begin(9600); // Initialize the serial monitor
    while (!Serial) {}; // If the serial monitor isn't opened, the code will stop 
here, so please open the serial monitor
    LIS.begin(WIRE, 0x19); // Initialize I2C
    delay(100);
    LIS.setOutputDataRate(LIS3DHTR_DATARATE_50HZ); // Set the accelerometer's output 
rate to 50Hz
    strip.begin(); // Start the strip
    strip.show(); // Display the strip
}

Step 3: Set the light effects to flash in red, green, and blue, respectively. Conditionals are used 
to change the color of the light strip according to the varying readings on the X, Y, and Z axes of 
the 3-axis accelerometer. These readings can be viewed via the serial monitor. By observing the 
change in values when the accelerometer is moved along the X, Y, and Z axes, we can determine 
the appropriate settings for the light strip. Since the readings may sometimes be negative, we 
take the absolute value of the readings. The abs() function can be used to get the absolute 
value, for example, abs(LIS.getAccelerationX()) would give the absolute value of the reading 
on the X-axis.

void loop() {
    if (!LIS) {  // Check if the 3-axis accelerometer is connected properly
        Serial.println(“LIS3DHTR didn’t connect.”);
        while (1);
        return;
    }

    if ((abs(LIS.getAccelerationX()) > 0.2)) {
        theaterChase(strip.Color(127, 0, 0), 50); // The light strip turns red
    }
    if ((abs(LIS.getAccelerationY()) > 0.2)) {
        theaterChase(strip.Color(0, 127, 0), 50); // The light strip turns green



104 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

    }
    if ((abs(LIS.getAccelerationZ()) > 1.0)) {
        theaterChase(strip.Color(0, 0, 127), 50); // The light strip turns blue
    }
    else
    {
        strip.clear(); 
        strip.show();
    }

    // Read the values of the X, Y, and Z axes from the sensor and display them on 
the serial monitor
    Serial.print(“x:”); Serial.print(LIS.getAccelerationX()); Serial.print(“  “);
    Serial.print(“y:”); Serial.print(LIS.getAccelerationY()); Serial.print(“  “);
    Serial.print(“z:”); Serial.println(LIS.getAccelerationZ());

    delay(500);
}
// Set theaterChase for flashing light effects
void theaterChase(uint32_t color, int wait) {
    for(int a=0; a<10; a++) {  
        for(int b=0; b<3; b++) { 
            strip.clear();   
            for(int c=b; c<strip.numPixels(); c += 3) {
                strip.setPixelColor(c, color);
            }
            strip.show(); 
            delay(wait);
        }
    }
}

Complete program as follows:

#include “LIS3DHTR.h”// Declare the library file for the 3-axis accelerometer
#include <Adafruit_NeoPixel.h>// Declare the library file for the light strip
#ifdef __AVR__
#include <avr/power.h> 
#endif
// The following is to initialize the module using software I2C or hardware I2C
#ifdef SOFTWAREWIRE
#include <SoftwareWire.h>
SoftwareWire myWire(3, 2);
LIS3DHTR<SoftwareWire> LIS; 
#define WIRE myWire
#else
#include <Wire.h>
LIS3DHTR<TwoWire> LIS;    
#define WIRE Wire
#endif

#define PIXEL_PIN 0 // Define the pin of the light strip, if you are using XIAO 
RP2040/XIAO ESP32, please change 0 to A0
#define PIXEL_COUNT 30 // Define the number of LEDs on the light strip as 30
Adafruit_NeoPixel strip(PIXEL_COUNT, PIXEL_PIN, NEO_GRB + NEO_KHZ800); // Declare 
the light strip object and set the data type

void setup() { 



105Chapter 2: project practice for beginners - introduction to prototype design

    Serial.begin(9600); // Initialize the serial monitor
    while (!Serial) {};// If you do not open the serial monitor, the code will stop 
here, so please open the serial monitor
    LIS.begin(WIRE, 0x19); // IIC initialization
    delay(100);
    LIS.setOutputDataRate(LIS3DHTR_DATARATE_50HZ); // Set the output rate of the ac-
celerometer to 50Hz
    strip.begin(); // The light strip starts working
    strip.show(); // The light strip displays
}
void loop() {
    if (!LIS) {  // Check if the 3-axis accelerometer is connected correctly
        Serial.println(“LIS3DHTR didn’t connect.”);
        while (1);
        return;
    }

    if ((abs(LIS.getAccelerationX()) > 0.2)) {
        theaterChase(strip.Color(127, 0, 0), 50); // The light strip turns red
    }
    if ((abs(LIS.getAccelerationY()) > 0.2)) {
        theaterChase(strip.Color(0, 127, 0), 50); // The light strip turns green
    }
    if ((abs(LIS.getAccelerationZ()) > 1.0)) {
        theaterChase(strip.Color(0, 0, 127), 50); // The light strip turns blue
    }
    else
    {
        strip.clear(); 
        strip.show();
    }

    // Read the values of the X, Y, and Z axes from the sensor and display them on 
the serial monitor
    Serial.print(“x:”); Serial.print(LIS.getAccelerationX()); Serial.print(“  “);
    Serial.print(“y:”); Serial.print(LIS.getAccelerationY()); Serial.print(“  “);
    Serial.print(“z:”); Serial.println(LIS.getAccelerationZ());

    delay(500);
}
// Set theaterChase for flashing light effects
void theaterChase(uint32_t color, int wait) {
    for(int a=0; a<10; a++) {  
        for(int b=0; b<3; b++) { 
            strip.clear();   
            for(int c=b; c<strip.numPixels(); c += 3) {
                strip.setPixelColor(c, color);
            }
            strip.show(); 
            delay(wait);
        }
    }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L10_MovementRGBLED_XIAO_en

 https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L10_MovementRGBLED_XIA
 https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L10_MovementRGBLED_XIA


106 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Step 4: Connect the hardware and upload the program. First, connect the RGB LED light strip 
to the A0/D0 interface of the XIAO expansion board, and the three-axis accelerometer to the I2C 
interface, as shown in the figure:

Use a data cable to connect XIAO to your computer, click the “Upload” button in Arduino IDE, 
and upload the program to the hardware. Once the debugging area shows “Upload Successful”, 
you can open the serial monitor and try swinging the three-axis accelerometer left, right, up, 
and down to feel the light effect changes of the light strip.

2.4.4 Exterior Design
Imagine how cool it would be if there were lights flashing with your dance steps as you 
passionately swing your arms. That’s where the inspiration for Rhythm Dance comes from. It can 
be combined with clothes or accessories to create a wearable style.

Product Name Rhythm Dance

Product Features Wearable, Cool light effects, Posture detection

Product Functions
RGB LED light strip displays different light effects based on 
the values detected by the three-axis accelerometer

Product Appearance
(For example: The waterproof layer on the outside of the 
RGB LED light strip can be removed, and it can be sewn 
together with clothes or a belt, etc.)

Reference for the case



107Chapter 3: intermediate project practice - complex projects

Chapter 3:  
Intermediate Project Practice - 
Complex Projects

In this unit, we will delve into more intricate and comprehensive projects, striving 
towards mature works in terms of program implementation and design of appearance 
structure. These include miniaturized smart homes, wearable electronic devices, 
interactive electronic instruments, Wi-Fi connectivity, and applications enabled by 
XIAO ESP32C3 or telemetry and command via the MQTT protocol. We will provide the 
laser-cut design blueprints for the first three cases for your reference. Of course, you’re 
not limited to these examples; you could use other, more accessible materials, such as 
corrugated cardboard or cardstock, for crafting. Feel free to unleash your creativity and 
design the work you wish to present!



108 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

3.1  
Smart Remote Control Door

In everyday life, privacy and security are matters of great concern to everyone. In recent 
years, the doors of residential areas have become increasingly smart, only accessible through 
electronic keys or passwords, preventing outsiders from gaining entry. In public areas or parking 
lot entrances, having a smart remote control to operate doors could facilitate the work of 
security personnel. A simple smart remote control door can be implemented using an infrared 
transmitter and an infrared receiver, which sends and receives infrared signals to open and 
close the door. In this section, we will build such a smart remote control door.

3.1.1 Background Knowledge

Infrared Receivers and Transmitters
An infrared receiver is used to receive infrared signals, and is 
also used for remote control detection. The infrared receiver 
has an inf rared detector for picking up the inf rared light 
emitted by the infrared transmitter. The Grove - IR Infrared 
Receiver Module has a range of 10 meters; signals cannot be 
received beyond this effective range. Generally, the infrared 
receiver and infrared transmitter work together.

An infrared transmitter is a type of remote control device with 
a remote control function. It emits light through an infrared 
emission tube within a certain range, thereby achieving 
control signal functions. The remote controls we use to control 
TVs, air conditioners, and car doors in daily life are infrared 
transmitters. Common infrared transmitters include modular 
ones like the Grove - Infrared Emitter Module, as well as regular 
remote controls, each with corresponding usage scenarios and 
methods. For our smart remote control door, we will be using 
an infrared remote control.

To explain simply, the principle of infrared transmission and 
reception is that the infrared transmitter inputs the signal, 
amplif ies it, and sends it through the infrared transmission 
tube. The infrared receiver then receives this infrared signal, 
amplifies it and converts it back to an electrical signal, thereby 
realizing infrared control.

3.1.2 Task 1: Reading Remote Control Key Codes

Adding the Arduino-IRremote Library File
Before we begin programming the Grove - IR Infrared Receiver with the Arduino IDE, we need 

Grove - IR Inf rared Receiver 
Module

Grove - Infrared Emitter Infrared 
Transmitter Module

Grove - Infrared Emitter Infrared 
Transmitter Module

https://www.seeedstudio.com/Grove-Infrared-Receiver.html?queryID=07158d4ed1af8b12bb25a91e2bf51431&objectID=2247&indexName=bazaar_retailer_products
https://www.seeedstudio.com/Grove-Infrared-Receiver.html?queryID=07158d4ed1af8b12bb25a91e2bf51431&objectID=2247&indexName=bazaar_retailer_products
https://github.com/Arduino-IRremote/Arduino-IRremote


109Chapter 3: intermediate project practice - complex projects

to add the necessary library f iles. Enter the library f ile address https://github.com/Arduino-
IRremote/Arduino-IRremote in your browser address bar, go to the GitHub page, and click 
Code→Download ZIP to download the resource package Arduino-IRremote-master.zip to your 
local machine, as shown in the image below:

Add the resource package Arduino-IRremote-master.zip you just downloaded through 
Sketch→Include Library→Add .ZIP Library in the Arduino IDE menu bar until you see a 
message indicating successful library loading.

Open the Example File 
If you want to control other devices through the infrared remote control, such as pressing the 
left key on the mini infrared remote control to rotate the servo to the left, or pressing the right 
key to rotate the servo to the right, you first need to know what kind of code each key on the 
remote control will emit. This way, you can set it through the program. But how do you read the 
codes of different keys on the remote control? You can use the IRremote library and open the 
IRrecvDemo example via the following path: **File→Examples→IRremote→ReceiveDemo**. This 
example program can read the key codes of the remote control, but some parameters need to 
be modified:

**int RECV_PIN = 7**, change the number according to the hardware connection pin. We 
have connected the infrared receiver to pin 7. Next, we select useful code. We only need to 
define the header file and the part that reads the remote control key codes. After reducing, the 
program is as follows:

#include <Arduino.h>
#include <IRremote.h>

const byte IR_RECEIVE_PIN=7; // The infrared receiver is connected to pin 7. If you 
are using XIAO RP2040/XIAO ESP32, please change 7 to A0

void setup() {
    Serial.begin(115200);
    Serial.println(F(“Enabling IRin”));

https://github.com/Arduino-IRremote/Arduino-IRremote
https://github.com/Arduino-IRremote/Arduino-IRremote


110 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

    IrReceiver.begin(IR_RECEIVE_PIN,ENABLE_LED_FEEDBACK); // Start infrared decoding
    Serial.print(F(“Ready to receive IR signals at pin “));
    Serial.println(IR_RECEIVE_PIN);
    delay(1000);
}

void loop() {
    if (IrReceiver.decode()) // Decode successfully, receive a set of infrared sig-
nals
   {
      Serial.println(IrReceiver.decodedIRData.command, HEX); // Output infrared de-
coding result (hexadecimal)
      Serial.println(IrReceiver.decodedIRData.command); // Output infrared decoding 
result (octal)
      IrReceiver.resume(); // Receive the next set of values
   }
}

Get this program from Github https://github.
com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L11_IRrecvDemo_en

The infrared receiver module is connected to 
the port 7, as shown in the following figure:

- Attention -

If you are using XIAO RP2040/XIAO ESP32, please change 7 to A0.

After the code is uploaded, open the serial monitor, aim the remote control at the black 
component of the infrared receiver at a close distance, press any key, and observe the characters 
output by the serial monitor. The hexadecimal code appears in the first line, and the octal code 
appears in the second line. The two lines form one group, representing one key. Please note that 
if you press the key for too long, “FFFFFFFF” will appear, and this line of code and the numeric 
code below are invalid.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L11_IRrecvDemo_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L11_IRrecvDemo_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L11_IRrecvDemo_en


111Chapter 3: intermediate project practice - complex projects

- Attention -

Different remote controls may give different values.3.1.3 Project Creation: Smart Remote 
Door

3.1.3 Project Creation: Smart Remote Door

Project Description
How can we recreate a smart remote control door? With a remote control and an infrared 
receiver, the next step is to control the opening and closing of the door. Recall how the remote 
control doors in our life work? When the remote control is pressed, the door slowly opens. When 
it opens to a certain angle, it slowly closes. We can use a servo to control the rotation of the 
door. When closing the door, the servo rotates from 90° to 0°. When opening the door, the servo 
rotates from 0° to 90°. By transmitting the signals to open and close the door with a remote 
control, we can implement the function of a smart remote control door.

Program Writing
To control the rotation of the servo with an infrared remote control, you need to follow these 
steps:

• Declare the IRremote library and Serve library to be called, and define variables.

• Initialize the library files, initialize the servo.

• Read the infrared decoding result and control the rotation of the servo according to the 
instructions to the left and right.

Task 2: Control the Rotation of the Servo with an Infrared Remote 
Control
Step 1: Declare the IRremote library and Serve library to be called, and define variables.

#include <IRremote.h>
#include <Servo.h>

Servo myservo; // Create a servo object myservo to control the servo
int RECV_PIN = 7; // The infrared receiver is connected to pin 7. If you are using 
XIAO RP2040/XIAO ESP32, please change 7 to A0
IRrecv irrecv(RECV_PIN); // Define an IRrecv object to receive infrared signals
decode_results results; // Decoding results are placed in results

int pos = 90; // Define pos as 90°

Step 2: Initialize the library files, initialize the servo.

void setup()
{
    Serial.begin(9600);
    Serial.println(“Enabling IRin”);  
    irrecv.enableIRIn(); 
    myservo.attach(5); // Connect the servo on pin 5 to myservo. If you are using 
XIAO RP2040/XIAO ESP32, please change 5 to D5
}



112 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Step 3: Read the infrared decoding result and control the rotation of the servo according to the 
instructions to the left and right. If you have questions about the program, you can refer to the 
comment section.

- Attention -

In the example, the infrared signal value of the right key 16761405, and the infrared signal 
value of the left key 16712445, need to be replaced by the values obtained from the “Read 
Remote Control Key Code” example using the remote control in your hand. Otherwise, there 
will be no response after pressing the key.

void loop() {
    if (irrecv.decode(&results)) {  // If decoding is successful, a set of infrared 
signals is received
        if (results.value == 16761405) {  // If the received signal is 16761405 (right 
key)
            for (pos; pos <= 89; pos += 1) { // Then the servo is incremented from 
0° to 90° in sequence
                myservo.write(pos);              // Write the rotation angle value 
to the servo pin
                delay(40);
                // The following is to interrupt the above instruction and exit the 
loop
                if (irrecv.decode(&results)) {  
                    irrecv.resume();
                    if (results.value == 16712445)  
                        break;
                }
            }
        }

        if (results.value == 16712445) {    // If the received signal is 16712445 
(left key)
            for (pos; pos >= 1; pos -= 1) { // Then the servo is decremented from 
90° to 0° in sequence
                myservo.write(pos);              // Write the rotation angle value 
to the servo pin
                delay(40);                       
                // The following is to interrupt the above instruction and exit the 
loop
                if (irrecv.decode(&results)) {
                    irrecv.resume();
                    if (results.value == 16761405)
                        break;
                }
            }
        }
        // Display hexadecimal and octal codes in the serial port
        Serial.println(pos);
        Serial.println(results.value, HEX);
        Serial.println(results.value);
        irrecv.resume();                    

    }
    delay(100);
}



113Chapter 3: intermediate project practice - complex projects

Complete program details:

#include <IRremote.h>
#include <Servo.h>

Servo myservo; // Create a servo object myservo to control the servo
int RECV_PIN = 7; // The infrared receiver is connected to pin 7. If you are using 
XIAO RP2040/XIAO ESP32, please change 7 to A0
IRrecv irrecv(RECV_PIN); // Define an IRrecv object to receive infrared signals
decode_results results; // Decoding results are placed in results

int pos = 90; // Define pos as 90°

void setup()
{
    Serial.begin(9600);
    Serial.println(“Enabling IRin”);  
    irrecv.enableIRIn(); 
    myservo.attach(5); // Connect the servo on pin 5 to myservo. If you are using 
XIAO RP2040/XIAO ESP32, please change 5 to D5
}

// Note: Left 16712445 Right 16761405, please replace with the key values read from 
your own remote control
void loop() {
    if (irrecv.decode(&results)) {  // If decoding is successful, a set of infrared 
signals is received
        if (results.value == 16761405) {  // If the received signal is 16761405 (right 
key)
            for (pos; pos <= 89; pos += 1) { // Then the servo is incremented from 
0° to 90° in sequence
                myservo.write(pos);              // Write the rotation angle value 
to the servo pin
                delay(40);
                // The following is to interrupt the above instruction and exit the 
loop
                if (irrecv.decode(&results)) {  
                    irrecv.resume();
                    if (results.value == 16712445)  
                        break;
                }
            }
        }

        if (results.value == 16712445) {    // If the received signal is 16712445 
(left key)
            for (pos; pos >= 1; pos -= 1) { // Then the servo is decremented from 
90° to 0° in sequence
                myservo.write(pos);              // Write the rotation angle value 
to the servo pin
                delay(40);                       
                // The following is to interrupt the above instruction and exit the 
loop
                if (irrecv.decode(&results)) {
                    irrecv.resume();
                    if (results.value == 16761405)
                        break;
                }



114 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

            }
        }
        // Display hexadecimal and octal codes in the serial port
        Serial.println(pos);
        Serial.println(results.value, HEX);
        Serial.println(results.value);
        irrecv.resume();                    

    }
    delay(100);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L11_IR_Servo_ino_XIAO_en

Step 4: Connect the hardware and upload the 
program. First, connect the infrared receiving 
module to the 7th interface of the XIAO expansion 
board, and connect the servo to the I2C interface, 
as shown in the figure below:

- Attention -

If you are using XIAO RP2040, please connect the infrared receiving module to the A0 
interface.

Connect XIAO to the computer with a data cable, click the “Upload” button, upload the program 
to the hardware, and when the debug area shows “Upload Successful”, open the serial monitor, 
aim the remote control at the infrared receiver, press the “Left” key and the “Right” key, observe 
the rotation of the servo, and check the encoding information output by the serial monitor.

3.1.4 Exterior Design
In this unit, we need to implement a more complete project, combining the functions 
implemented by the program, the modules, and the appearance of the structure to form a 
prototype. Going back to the smart remote control door project, we need to control the rotation 
of the servo through the remote control, simulate the opening and closing of the door. When 
making the appearance, we need to focus on the following issues:

• How to combine the servo and the door panel to make the rotation of the servo drive the 
rotation of the door panel.

• The infrared receiver should be exposed in a conspicuous position, without any cover.

• Whether the main control, expansion board, and connecting wires are covered to keep the 
appearance neat.

• How to make the work stand steadily.

The figure below provides an appearance case, which is laser cut from basswood, and provides 
cutting f iles for reference. If you can use drawing software, you can process and design it 
yourself. If you don’t have a laser cutting machine, you can also use corrugated paper, cardstock, 
non-woven fabric, and other handmade materials to make it, which tests your hands-on ability 
more.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L11_IR_Servo_ino_XIAO_e
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L11_IR_Servo_ino_XIAO_e


115Chapter 3: intermediate project practice - complex projects

Download files for use with a laser cutter 

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO_ADR.dxf.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO_ADR.dxf.


116 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

3.2  
Smart Watch

The watch is a common item in life. Even though various electronic devices now have timing 
functions, and mobile phones can replace watches as timing tools, watches are still a popular 
item. They are not only timing tools, but also have fashion matching functions. Although 
watches are delicate and small, they involve complex craftsmanship. Now with XIAO and its 
expansion board, we can easily make them.

3.2.1 Background Knowledge

RTC Clock
RTC stands for Real_Time Clock, which is an integrated circuit used to display time, also called 
an RTC clock chip. RTCs are widely used, and we can find RTC in almost any electronic device. In 
the XIAO expansion board, there is an RTC clock chip, as shown in the following figure. We can 
display the date and time on the OLED display on the expansion board, and it can be powered 
by a button battery or lithium battery. Even if we disconnect, it can continue to track time. When 
we reconnect the power supply, we will find that the time is still moving. With the RTC clock, we 
can make timed reminder devices, such as timed watering, timed pet feeding, and so on.

Grove also has an RTC module: Grove - DS1307 RTC (Real Time Clock) for Arduino, as shown in 
the figure below.

Position of the RTC clock chip on the XIAO expansion 
board

Grove RTC Module

3.2.2 Task 1: Displaying RTC Clock in the Serial Monitor

Adding PCF8563-Arduino-Library Library
Before starting to program the RTC on the XIAO expansion board with Arduino IDE, you need to 
add the necessary library files. Enter the library file address https://github.com/Bill2462/PCF8563-
Arduino-Library in the browser address bar, go to the GitHub page, click Code→Download ZIP to 
download the resource package PCF8563-Arduino-Library-master.zip to the local, as shown 
in the figure below.

https://www.seeedstudio.com/Grove-RTC-DS1307.html?queryID=73f4015b0d2879c1ce927a4167c7ac98&objectID=1814&indexName=bazaar_retailer_products
https://github.com/Bill2462/PCF8563-Arduino-Library
https://github.com/Bill2462/PCF8563-Arduino-Library
https://github.com/Bill2462/PCF8563-Arduino-Library


117Chapter 3: intermediate project practice - complex projects

Add the previously downloaded resource package PCF8563-Arduino-Library-master.zip in 
Sketch→Include Library→Add .ZIP Library in the menu bar until you see the library loading 
success prompt.

Opening the Sample File
Creating an RTC clock can’t be without the powerful library f ile. Open the simple example 
through the following path: File→Examples→PCF8563→simple. This example program can 
display the RCT clock through the serial monitor. After opening the example program, we only 
need to modify the current date and start time:

#include <PCF8563.h> //Declare library file
PCF8563 pcf;//Define variable pcf

void setup() {
    Serial.begin(9600);
    pcf.init();//Initialize the clock
    pcf.stopClock();//Stop the clock

    //Set the current date and time. After setting, it will start timing from this 
moment

    pcf.setYear(23);//Year
    pcf.setMonth(05);//Month
    pcf.setDay(29);//Day
    pcf.setHour(16);//Hour
    pcf.setMinut(10);//Minute
    pcf.setSecond(0);//Second

    pcf.startClock();//Clock starts timing
}



118 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

void loop() {
    Time nowTime = pcf.getTime();//Get time

    //Print the current date and time on the serial monitor
    Serial.print(nowTime.day);
    Serial.print(“/”);
    Serial.print(nowTime.month);
    Serial.print(“/”);
    Serial.print(“20”); // Manually input the set year
    Serial.print(nowTime.year);
    Serial.print(“/”);
    Serial.print(nowTime.hour);
    Serial.print(“:”);
    Serial.print(nowTime.minute);
    Serial.print(“:”);
    Serial.println(nowTime.second);
    delay(1000);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L12_RTC_simple_XIAO_en

Without connecting other electronic modules, you can click the upload program button. After 
the code is uploaded, open the serial monitor, and you will be able to see the time.

3.2.3 Project Making: Smart Watch

Project Description
In this section, we are going to make a smart watch that can display the date, time, temperature, 
and humidity in real time. To display the date and time, we just need XIAO and the expansion 
board. To display the temperature and humidity, we need to add a temperature and humidity 
sensor.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L12_RTC_simple_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L12_RTC_simple_XIAO_en


119Chapter 3: intermediate project practice - complex projects

Programming
The program consists of the following steps:

• Declare the necessary libraries and define variables.

• Initialize the libraries, and set the current time.

• Read temperature and humidity variables, get the current time, and display the temperature, 
humidity, and date/time on the OLED screen.

- Attention -

Before starting to program for the OLED of the XIAO expansion board, make sure that the 
U8g2_Arduino library has been loaded into the Arduino IDE. The loading method can be 
referred to the instructions in the “How to Download and Install Arduino Libraries” section of 
Section 1.1.

Before starting to program for the Grove temperature and humidity sensor, make sure that 
the Arduino IDE has loaded the Grove_Temperature_And_Humidity_Sensor library. The 
loading method can be referred to the instructions in the “Adding the Grove_Temperature_
And_Humidity_Sensor Library” section of Section 2.2.

Task 2: Display the current time and temperature/humidity 
values on the OLED display of the XIAO expansion board (based 
on the DHT20 sensor)
Step 1: Declare the necessary libraries and define variables.

#include <Arduino.h>
#include <U8x8lib.h> //use u8x8 library
#include <PCF8563.h> //RTC library
PCF8563 pcf; //define variable pcf
#include <Wire.h>
#include “DHT.h” //DHT library
#define DHTTYPE DHT20 //The type of the temperature and humidity sensor is DHT20
DHT dht(DHTTYPE);
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE); //OLED’s con-
structor, set data type, connect OLED display

Step 2: Initialize the libraries, and set the current time.

void setup() {
    Serial.begin(9600);
    u8x8.begin(); //u8x8 starts working
    u8x8.setFlipMode(1);
    Wire.begin();
    pcf.init(); //Initialize the clock
    pcf.stopClock(); //Stop the clock
    //Set the current time and date:
    pcf.setYear(23);
    pcf.setMonth(05);
    pcf.setDay(29);
    pcf.setHour(18);
    pcf.setMinut(53);
    pcf.setSecond(0);
    pcf.startClock(); //The clock starts timing
}

https://mjrovai.github.io/XIAO_Big_Power_Small_Board-ebook/chapter_2-2.html#task-1-reading-temperature-and-humidity-values-in-the-serial-monitor-based-on-the-dht20-model
https://mjrovai.github.io/XIAO_Big_Power_Small_Board-ebook/chapter_2-2.html#task-1-reading-temperature-and-humidity-values-in-the-serial-monitor-based-on-the-dht20-model


120 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Step 3: Read temperature and humidity variables, get the current time, and display the 
temperature, humidity, and date/time on the OLED screen.

void loop() {
    float temp, humi; //Define temperature and humidity variables
    temp = dht.readTemperature(); //Read the temperature value
    humi = dht.readHumidity(); //Read the humidity value
    Time nowTime = pcf.getTime(); //Get the time
    u8x8.setFont(u8x8_font_chroma48medium8_r); //u8x8 font

    //Display the current date, time, temperature, and humidity at different coordi-
nates on the OLED screen.
    u8x8.setCursor(0, 0);
    u8x8.print(nowTime.day);
    u8x8.print(“/”);
    u8x8.print(nowTime.month);
    u8x8.print(“/”);
    u8x8.print(“20”);
    u8x8.print(nowTime.year);
    u8x8.setCursor(0, 1);
    u8x8.print(nowTime.hour);
    u8x8.print(“:”);
    u8x8.print(nowTime.minute);
    u8x8.print(“:”);
    u8x8.println(nowTime.second);
    delay(1000);
    u8x8.setCursor(0, 2);
    u8x8.print(“Temp:”);
    u8x8.print(temp);
    u8x8.print(“C”);
    u8x8.setCursor(0,3);
    u8x8.print(“Humidity:”);
    u8x8.print(humi);
    u8x8.print(“%”);
    u8x8.refreshDisplay();
    delay(200);
}

For the complete program, please refer to:

#include <Arduino.h>
#include <U8x8lib.h> //use u8x8 library
#include <PCF8563.h> //RTC library
PCF8563 pcf; //define variable pcf
#include <Wire.h>
#include “DHT.h” //DHT library
#define DHTTYPE DHT20 //The type of the temperature and humidity sensor is DHT20
DHT dht(DHTTYPE);
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE); //OLED’s con-
structor, set data type, connect OLED display

void setup() {
    Serial.begin(9600);
    u8x8.begin(); //u8x8 starts working
    u8x8.setFlipMode(1);
    Wire.begin();
    pcf.init(); //Initialize the clock



121Chapter 3: intermediate project practice - complex projects

    pcf.stopClock(); //Stop the clock
    //Set the current time and date:
    pcf.setYear(23);
    pcf.setMonth(05);
    pcf.setDay(29);
    pcf.setHour(18);
    pcf.setMinut(53);
    pcf.setSecond(0);
    pcf.startClock(); //The clock starts timing
}
void loop() {
    float temp, humi; //Define temperature and humidity variables
    temp = dht.readTemperature(); //Read the temperature value
    humi = dht.readHumidity(); //Read the humidity value
    Time nowTime = pcf.getTime(); //Get the time
    u8x8.setFont(u8x8_font_chroma48medium8_r); //u8x8 font

    //Display the current date, time, temperature, and humidity at different coordi-
nates on the OLED screen.
    u8x8.setCursor(0, 0);
    u8x8.print(nowTime.day);
    u8x8.print(“/”);
    u8x8.print(nowTime.month);
    u8x8.print(“/”);
    u8x8.print(“20”);
    u8x8.print(nowTime.year);
    u8x8.setCursor(0, 1);
    u8x8.print(nowTime.hour);
    u8x8.print(“:”);
    u8x8.print(nowTime.minute);
    u8x8.print(“:”);
    u8x8.println(nowTime.second);
    delay(1000);
    u8x8.setCursor(0, 2);
    u8x8.print(“Temp:”);
    u8x8.print(temp);
    u8x8.print(“C”);
    u8x8.setCursor(0,3);
    u8x8.print(“Humidity:”);
    u8x8.print(humi);
    u8x8.print(“%”);
    u8x8.refreshDisplay();
    delay(200);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L12_SmartWatch_DHT20_XIAO_en

Step 4: Connect the hardware and upload 
the program. First ,  connect the DHT20 
temperature and humidity sensor to the I2C 
interface of the XIAO expansion board, and 
connect the XIAO to the computer with a data 
cable, as shown in the picture:

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L12_SmartWatch_DHT20_XI
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L12_SmartWatch_DHT20_XI


122 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Click the “Upload” button in the Arduino 
IDE to upload the program to the hardware. 
When the debugging area shows “Upload 
successful”, observe whether the OLED display 
correctly outputs the current time and starts 
timing, as well as the real-time temperature 
and humidity.

Task 3: Display the current time and temperature and humidity 
values on the OLED display of the XIAO expansion board (based 
on the DHT11 sensor)
If you are using the Grove DHT11 temperature and humidity sensor with a blue casing, part of 
the program code needs to be modified as follows:

#define DHTPIN 0, this needs to be modified according to the actual pin number to which the 
temperature and humidity sensor is connected.

#define DHTTYPE DHT11, since there are different models of temperature and humidity sensors, 
you need to select the correct model — DHT11. The modified example code is as follows:

#include <Arduino.h>
#include <U8x8lib.h>
#include <PCF8563.h>
PCF8563 pcf;
#include <Wire.h>
#include “DHT.h” 
#define DHTPIN 0  
#define DHTTYPE DHT11 
DHT dht(DHTPIN, DHTTYPE);
U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(/* reset=*/ U8X8_PIN_NONE);
//U8X8_SSD1306_128X64_NONAME_SW_I2C u8x8(/* clock=*/ SCL, /* data=*/ SDA, /* re-
set=*/ U8X8_PIN_NONE);   // OLEDs without Reset of the Display
 
void setup() {
  Serial.begin(115200);
  u8x8.begin();
  u8x8.setFlipMode(1);
  Wire.begin();
  pcf.init(); //initialize the clock
  pcf.stopClock(); //stop the clock
  pcf.setYear(23); //set year
  pcf.setMonth(05); //set month
  pcf.setDay(29); //set date
  pcf.setHour(18); //set hour
  pcf.setMinut(53); //set minute
  pcf.setSecond(0); //set second
  pcf.startClock(); //start the clock
}
 



123Chapter 3: intermediate project practice - complex projects

void loop() {
  float temp, humi;
  temp = dht.readTemperature();
  humi = dht.readHumidity();
  Time nowTime = pcf.getTime(); //get current time
  u8x8.setFont(u8x8_font_chroma48medium8_r);   // choose a suitable font
 
  u8x8.setCursor(0, 0);
  u8x8.print(nowTime.day);
  u8x8.print(“/”);
  u8x8.print(nowTime.month);
  u8x8.print(“/”);
  u8x8.print(“20”);
  u8x8.print(nowTime.year);
  u8x8.setCursor(0, 1);
  u8x8.print(nowTime.hour);
  u8x8.print(“:”);
  u8x8.print(nowTime.minute);
  u8x8.print(“:”);
  u8x8.println(nowTime.second);
  delay(1000);
  u8x8.setCursor(0, 2);
  u8x8.print(“Temp:”);
  u8x8.print(temp);
  u8x8.print(“C”);
  u8x8.setCursor(0,3);
  u8x8.print(“Humidity:”);
  u8x8.print(humi);
  u8x8.print(“%”);
  u8x8.refreshDisplay();
  delay(200);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L12_SmartWatch_DHT11_XIAO_en

After modifying the code, first connect the DHT11 temperature and humidity sensor to the A0 
interface of the XIAO expansion board, as shown in the image below.

Then connect the XIAO development board to your computer, upload the modified sample program 
to the XIAO via Arduino IDE, and you should be able to see the time, temperature, and humidity 
readings on the OLED of the XIAO expansion board. You can place the temperature and humidity 
sensor in different environments to observe changes in temperature and humidity readings.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L12_SmartWatch_DHT11_XI
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L12_SmartWatch_DHT11_XI


124 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

3.2.4 Exterior Design
Given its compact size, XIAO is especially suitable for creating wearable devices. The expansion 
board incorporates an RTC chip, a buzzer, and an OLED display screen, which means you can 
create a variety of applications even without adding other modules. In this section, we have 
made a smart watch using the on-board OLED display, RTC chip, and an external temperature 
and humidity sensor. When creating the appearance, we only need to consider wearability, 
organization of modules and connecting wires, and the exposure of the OLED display screen. 
As shown below, we provide a wearable watch style and the laser cutting files for it. With just a 
simple installation, your wearable device is ready.

Download files for laser cutting machine https://github.com/mouseart/XIAO-Mastering-Arduino-
and-TinyML/blob/main/dxf/XIAO_X_watch.dxf

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO_X_watch.dxf
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO_X_watch.dxf


125Chapter 3: intermediate project practice - complex projects

3.3 
Air Piano

Normally, when we play a musical instrument, we have to pluck strings or press keys to produce 
musical notes. However, with electronic modules, playing music can become more exciting. 
For instance, you can simulate piano playing with push-button switches and even integrate 
light effects for interactive music. But if you use push-button switches as piano keys, you 
need to integrate many modules into the circuit. Is there a simpler and more unique idea? 
A combination of ultrasonic distance sensor and passive buzzer can do just that - detecting 
different distances with ultrasonics to trigger different notes, just like playing a piano in the air.

3.3.1 Background Knowledge

Grove Ultrasonic Distance Sensor
The Grove Ultrasonic Distance Sensor is a non-contact distance 
measurement module. Thanks to its strong directivity, the 
ultrasonic waves it emits can travel long distances in a medium. 
The calculations are simple and it is easy to control, so it’s often 
used for distance measurements. When the ultrasonic distance 
sensor works, the transmitter emits ultrasonic waves in a certain 
direction. When the waves hit an obstacle, they reflect back. 
The ultrasonic receiver stops timing as soon as it receives the reflected waves. The actual distance 
from the emission point to the obstacle is calculated based on the time difference between 
emission and reception, much like bat echolocation. The application range of ultrasonic waves is 
becoming broader, commonly seen in reverse radar systems, intelligent guidance systems, robot 
obstacle avoidance systems, medical ultrasound examinations, and more.

- Attention -

The Grove Ultrasonic Distance Sensor module is not included in the Seeed Studio XIAO 
Starter Kit!

https://www.seeedstudio.com/Grove-Ultrasonic-Distance-Sensor.html


126 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

3.3.2 Task 1: Reading the Grove Ultrasonic Distance Sensor 
Value

Adding the Seeed_Arduino_UltrasonicRanger Library
Before starting to program the Grove Ultrasonic Distance Sensor with Arduino IDE, it’s 
necessary to add the essential library for the sensor. Type the library address https://github.
com/Seeed-Studio/Seeed_Arduino_UltrasonicRanger into the browser address bar, enter the 
GitHub page, click Code→Download ZIP to download the resource package Seeed_Arduino_
UltrasonicRanger-master.zip to your local drive, as shown below.

Add the downloaded resource package Seeed_Arduino_UltrasonicRanger-master.zip to 
the Sketch→Include Library→Add .ZIP Library from the menu bar until you see a successful 
library loading prompt.

Opening the Example File
After successfully installing the library, a new item Grove Ultrasonic Ranger will be added to 
the Arduino’s File→Examples list. Open the UltrasonicDisplayOnTerm sample program from 
it. This program can display the value of the ultrasonic distance sensor on the Serial Monitor. 
Modify Ultrasonic ultrasonic(7); in the sample program to Ultrasonic ultrasonic(0); (the 
ultrasonic distance sensor will be connected to the A0 port of the XIAO expansion board).

https://github.com/Seeed-Studio/Seeed_Arduino_UltrasonicRanger
https://github.com/Seeed-Studio/Seeed_Arduino_UltrasonicRanger
https://github.com/Seeed-Studio/Seeed_Arduino_UltrasonicRanger


127Chapter 3: intermediate project practice - complex projects

Open the modified sample file through the following path, https://github.com/mouseart/XIAO-
Mastering-Arduino-and-TinyML/tree/main/code/L13_UltrasonicDisplayOnTerm_XIAO_en.

#include “Ultrasonic.h”//declare the library file
Ultrasonic ultrasonic(0);//define variables, connect pins. If you’re using XIAO 
RP2040/XIAO ESP32, please change 0 to D0
void setup() {
    Serial.begin(9600);
}
void loop() {
    long RangeInInches;//define a long integer variable named RangeInInches
    long RangeInCentimeters;//define a long integer variable named RangeInCentimeters

    Serial.println(“The distance to obstacles in front is: “);
    RangeInInches = ultrasonic.MeasureInInches();//read the distance value (inches) 
measured by the ultrasonic distance sensor and store it in the variable RangeInInch-
es
    Serial.print(RangeInInches);//serial print value
    Serial.println(“ inch”);
    delay(250);

    RangeInCentimeters = ultrasonic.MeasureInCentimeters(); //read the distance 

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L13_UltrasonicDisplayOn
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L13_UltrasonicDisplayOn


128 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

value (centimeters) measured by the ultrasonic distance sensor and store it in the 
variable RangeInCentimeters
    Serial.print(RangeInCentimeters);//serial print value
    Serial.println(“ cm”);
    delay(250);
}

The ultrasonic distance sensor is connected to the A0 
interface, as shown in the figure below:

After uploading the code, open the Serial Monitor. Place 
your hand or a card at any position in front of the ultrasonic 
distance sensor and observe the change in the values 
output by the Serial Monitor.

3.3.3 Project Production: Ultrasonic Air Harp

Project Description
The working principle of the air harp is to 
measure the distance from the module 
to the palm of your hand through the 
ultrasonic distance sensor. Depending on 
the distance, the buzzer emits different 
musical notes. We have already learned 
how to measure distance and read values 
through the ultrasonic distance sensor 
with the sample program. Next, we just 
need to define different musical notes for 



129Chapter 3: intermediate project practice - complex projects

the corresponding distances. As shown in the figure below: According to the width of the palm, 
one musical note corresponds to a unit of 2cm, and the performance starts from 4cm. “Do, Re, 
Mi, Fa, Sol, La, Xi, Do” respectively correspond to 4cm, 6cm, 8cm, 10cm, 12cm, 14cm, 16cm, 18cm… 
and so on.

Writing the Program
The implementation of the air harp program requires the following steps:

• Declare the library file, define different notes and buzzer pins.

• Initialization, setting the status of the buzzer pin.

• Read the distance (cm) measured by the ultrasonic distance sensor, and make a condition 
judgment to set different distances to emit different notes.

Using the tone() Function to Play Melody

When we want to control the buzzer to play notes or songs through the program, we need to 
set the frequency value of each note ourselves. If a song has many notes, it’s too troublesome 
to adjust one by one, and it tests our music theory knowledge and pitch. Is there a simpler 
method? Of course! When defining notes, we can refer to the tone() function written on the 
Arduino website https://www.arduino.cc/en/Tutorial/BuiltInExamples/toneMelody, this function 
defines the corresponding frequency of different notes through pitches.h, which is convenient 
for us to use the tone() function to set the notes emitted by the buzzer. The code of pitches.h 
is shown below:

/*
* pitches.h
*/

#define NOTE_B0  31
#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
#define NOTE_F1  44
#define NOTE_FS1 46
#define NOTE_G1  49
#define NOTE_GS1 52
#define NOTE_A1  55
#define NOTE_AS1 58
#define NOTE_B1  62
#define NOTE_C2  65
#define NOTE_CS2 69
#define NOTE_D2  73
#define NOTE_DS2 78
#define NOTE_E2  82
#define NOTE_F2  87
#define NOTE_FS2 93
#define NOTE_G2  98
#define NOTE_GS2 104
#define NOTE_A2  110
#define NOTE_AS2 117
#define NOTE_B2  123
#define NOTE_C3  131
#define NOTE_CS3 139

#define NOTE_D3  147
#define NOTE_DS3 156
#define NOTE_E3  165
#define NOTE_F3  175
#define NOTE_FS3 185
#define NOTE_G3  196
#define NOTE_GS3 208
#define NOTE_A3  220
#define NOTE_AS3 233
#define NOTE_B3  247
#define NOTE_C4  262
#define NOTE_CS4 277
#define NOTE_D4  294
#define NOTE_DS4 311
#define NOTE_E4  330
#define NOTE_F4  349
#define NOTE_FS4 370
#define NOTE_G4  392
#define NOTE_GS4 415
#define NOTE_A4  440
#define NOTE_AS4 466
#define NOTE_B4  494
#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831

#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047
#define NOTE_CS6 1109
#define NOTE_D6  1175
#define NOTE_DS6 1245
#define NOTE_E6  1319
#define NOTE_F6  1397
#define NOTE_FS6 1480
#define NOTE_G6  1568
#define NOTE_GS6 1661
#define NOTE_A6  1760
#define NOTE_AS6 1865
#define NOTE_B6  1976
#define NOTE_C7  2093
#define NOTE_CS7 2217
#define NOTE_D7  2349
#define NOTE_DS7 2489
#define NOTE_E7  2637
#define NOTE_F7  2794
#define NOTE_FS7 2960
#define NOTE_G7  3136
#define NOTE_GS7 3322
#define NOTE_A7  3520
#define NOTE_AS7 3729
#define NOTE_B7  3951
#define NOTE_C8  4186
#define NOTE_CS8 4435
#define NOTE_D8  4699
#define NOTE_DS8 4978

https://www.arduino.cc/en/Tutorial/BuiltInExamples/toneMelody


130 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Task 2: Ultrasonic Air Harp
Step 1: Declare the library file, define different notes and buzzer pins. The main notes we use are 
“Do Re Mi Fa Sol La Xi Do”, corresponding to “C5 D5 E5 F5 G5 A5 B5 C6”. You can only define the 
notes you need to avoid the program looking too lengthy.

#include “Ultrasonic.h”//declare the library file
Ultrasonic ultrasonic(0);//define the ultrasonic object and connect the ultrasonic 
wave to the A0 interface. If you’re using XIAO RP2040, please change 0 to D0
int buzzerPin = 3;//The buzzer is connected to the A3 interface, if you’re using 
XIAO RP2040, please change 3 to A3

#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831
#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047

Step 2: Initialize the baud rate and set the buzzer pin status.

void setup()
{
    Serial.begin(9600);
    pinMode(buzzerPin,OUTPUT);
}

Step 3: Read the distance (cm) measured by the ultrasonic distance sensor and make a 
condition judgment to set different distances to emit different notes. Since the setting of the air 
harp is that different distances trigger different notes, and this distance is a long integer value, 
so we need to use the long() function to define the value returned by the ultrasonic wave. For 
example, (long)RangeInCentimeters== 4, that is, the distance value returned by the ultrasonic 
wave is 4. Corresponding to the buzzer emitting different notes, use the tone() function, for 
example, tone(3,NOTE_C5,100), that is, the buzzer on pin 3, emits NOTE_C5 (Do) note, lasts for 
100 milliseconds.

void loop()
{
    // Read the distance value detected by the ultrasonic distance sensor, in centi-
meters, and print it on the serial monitor
    long RangeInCentimeters;
    RangeInCentimeters = ultrasonic.MeasureInCentimeters(); 
    Serial.print(RangeInCentimeters);
    Serial.println(“ cm”);
    delay(250);
    // Using an if statement for conditional judgment, when the distance is 4, 6, 8, 
10, 12, 14, 16, 18, it corresponds to C5, D5, E5, F5, G5, A5, B5, C6
    if (((long)RangeInCentimeters== 4)) {  //Do



131Chapter 3: intermediate project practice - complex projects

        tone(3,NOTE_C5,100);   
    }
    if (((long) RangeInCentimeters== 6)) { //Re
        tone(3,NOTE_D5,100);    
    }
    if (((long) RangeInCentimeters== 8)) { //Mi
        tone(3,NOTE_E5,100);  
    }
    if (((long) RangeInCentimeters== 10)) {  //Fa
        tone(3,NOTE_F5,100);
    }
    if (((long) RangeInCentimeters== 12)) {  //Sol
        tone(3,NOTE_G5,100);
    }
    if (((long) RangeInCentimeters== 14)) {  //La
        tone(3,NOTE_A5,100);
    }
    if (((long) RangeInCentimeters== 16)) { //Xi
        tone(3,NOTE_B5,100);
    }
    if (((long) RangeInCentimeters== 18)) {  //Do
        tone(3,NOTE_C6,100);
    }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L13_UltrasonicPiano_XIAO_en

Step 4: Connect the hardware and upload the program. 
Connect the ultrasonic distance sensor to the A0 interface of 
the XIAO expansion board as shown below:

Use the data cable to connect XIAO to the computer, click 
the “Upload” button, upload the program to the hardware, 
when the debugging area shows “Upload Successful”, open 
the serial monitor, and start playing with your palm.

3.3.4 Exterior Design
The inspiration for the air harp comes 
from the piano, with a note every 2 
cm also designed according to the 
style of the piano keys. In the process 
of creating the appearance, we can 
cut a harp surface from a basswood 
board, and f ix the ultrasonic range 
sensor at the left end of the harp. 
We also provide laser cutting f iles 
for reference, which can be easily 
assembled, as shown in the picture:

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L13_UltrasonicPiano_XIA
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L13_UltrasonicPiano_XIA


132 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Download the files suitable for the laser cutting machine https://github.com/mouseart/XIAO-
Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO_Air_Piano.dxf.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO_Air_Piano.dxf.
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/blob/main/dxf/XIAO_Air_Piano.dxf.


133Chapter 3: intermediate project practice - complex projects

3.4 
Implementing Wi-Fi Connection and 
Applications with XIAO ESP32C3

Rather than saying computers have changed the world, 
it would be more accurate to say that computer networks 
have. The emergence of networks has truly made computers 
different from previous tools. The sharing and exchange of 
information have made computers an epoch-making product. 
In this section, we will learn how to implement network 
requests using XIAO ESP32C3, which has Wi-Fi and Bluetooth 
(BLE) capabilities. This includes connecting XIAO to a Wi-Fi 
network, pinging specif ied websites, and issuing GET/POST 
requests using the HTTP protocol.

3.4.1 Background Knowledge

OSI Reference Model (Network Seven-Layer Model)
OSI (Open System Interconnect) 
is commonly known as the OSI 
reference model or network 
seven-layer structure, which 
is the network interconnect 
m o d e l  r e s e a r c h e d  b y  t h e 
ISO organization in 1985. This 
architectural standard def ines 
the seven- layer  f ramework 
(physical layer, data link layer, 
network layer, transport layer, 
sess ion layer ,  presentat ion 
layer, and application layer) 
for network interconnection. 
For ease of  understanding, 
the following diagram uses a 
logistics transportation process 
to correspond to each layer of 
the OSI model.

The following knowledge will 
use the concepts of these layers.

Seeed Studio XIAO ESP32C3



134 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

ICMP (Internet Control Message Protocol) and ping Command
ICMP (Internet Control Message Protocol) is a sub-protocol of the TCP/IP protocol suite. It is used 
to transmit control messages between IP hosts and routers. Control messages refer to messages 
about the network itself, such as whether the network is available, whether the host is reachable, 
whether the route is available, etc. Although these control messages do not transmit user data, 
they play an important role in the transmission of user data.

 - Learn more - 

Visit the Wikipedia entry on ICMP.

We often use the ICMP protocol in the network, such as the Ping command (available in both 
Linux and Windows) we often use to check whether the network is available. This Ping process is 
actually the working process of the ICMP protocol. ping can test the connection speed between 
two devices and accurately report the time it takes for a packet to reach its destination and 
return to the sender’s device. Although ping does not provide data about routing or hops, it 
is still a useful metric for measuring latency between two devices. Below we will learn how to 
implement ping requests on XIAO ESP32C3.

Before starting this attempt, we need to learn how to connect XIAO ESP32C3 with your Wi-Fi.

3.4.2 Task 1: Using Wi-Fi Network on XIAO ESP32C3
XIAO ESP32C3 supports Wi-Fi connections with IEEE 802.11b/g/n. The following will introduce the 
basic knowledge of using Wi-Fi on this board.

- Attention -

Be careful when attempting to use the XIAO ESP32C3 development board as a hotspot 
(access point). Overheating issues may occur and lead to burns.

Hardware Setup: Connect an Antenna to the XIAO ESP32C3 and 
Connect it to Your Computer
Step 1 :  Connect the provided Wi-Fi/
Bluetooth antenna to the IPEX connector 
on the development board.

Step 2: Connect the XIAO ESP32C3 to your 
computer via a USB Type-C data cable.

https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol


135Chapter 3: intermediate project practice - complex projects

Software Setup: Add the ESP32 Board Package to the Arduino IDE 
Step 1: Open the Arduino IDE preferences to add the Board Manager URL.

• For Windows users, first open your Arduino IDE, click on “File→Preferences” in the top menu 
bar, and copy the following URL into “Additional Board Manager URLs”.

• For Mac users, f irst open your Arduino IDE, click on “Arduino IDE→Preferences” in the top 
menu bar, and copy the following URL into “Additional Board Manager URLs”.

For Seeed Studio XIAO ESP32C3, copy the link below: https://raw.githubusercontent.com/
espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json to the Board Manager URL bar 
and confirm, as shown in the figure below.

Step 2: In the Arduino IDE menu, click “Tools→Board→Board Manager”, type “esp32” into the 
search bar, find the latest version of ESP32 Arduino in the resulting entries, and click “Install”. 
When the installation starts, you will see an output pop-up. Once the installation is complete, 
the “Installed” option will appear.

Step 3: Select the Board.

Navigate to “Tools > Board > ESP32 Arduino” and select “XIAO_ESP32C3”. The list will be a bit 
long, and you will need to scroll down to find it, as shown in the figure below.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json


136 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Step 4: Add Port.

Check if the port connection is correct in the Arudino IDE. If not, you need to manually select.

For Windows systems, the serial port is displayed as “COM+number”, as shown in the figure 
below.

• For Windows systems, the serial port is displayed as “COM+number”, as shown in the figure 
below.

• On Mac or Linux systems, the port name is typically /dev/tty.usbmodem+number or /dev/
cu.usbmodem+number, as shown in the figure below.



137Chapter 3: intermediate project practice - complex projects

Scanning Nearby Wi-Fi Networks (STA Mode) 
In this example, we will use the XIAO ESP32C3 to scan for available Wi-Fi networks in the area. The 
development board in this example will be configured in STA mode.

Step 1: Copy and paste the code below into the Arduino IDE.

#include “WiFi.h”
 
void setup()
{
    Serial.begin(115200);
 
    // Set WiFi to station mode and disconnect from an AP if it was previously con-
nected
    WiFi.mode(WIFI_STA);
    WiFi.disconnect();
    delay(100);
 
    Serial.println(“Setup done”);
}
 
void loop()
{
    Serial.println(“scan start”);
 
    // WiFi.scanNetworks will return the number of networks found
    int n = WiFi.scanNetworks();
    Serial.println(“scan done”);
    if (n == 0) {
        Serial.println(“no networks found”);
    } else {
        Serial.print(n);
        Serial.println(“ networks found”);
        for (int i = 0; i < n; ++i) {
            // Print SSID and RSSI for each network found
            Serial.print(i + 1);
            Serial.print(“: “);
            Serial.print(WiFi.SSID(i));
            Serial.print(“ (“);
            Serial.print(WiFi.RSSI(i));
            Serial.print(“)”);
            Serial.println((WiFi.encryptionType(i) == WIFI_AUTH_OPEN)?” “:”*”);
            delay(10);
        }
    }
    Serial.println(“”);
 
    // Wait a bit before scanning again
    delay(5000);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L14_Scanwifi_XIAO_en

Step 2: Upload the code and open the serial monitor to start scanning for Wi-Fi networks, as 
shown in the figure below.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_Scanwifi_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_Scanwifi_XIAO_en


138 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Connecting to a Wi-Fi Network
In this example, we will use the XIAO ESP32C3 to connect to your Wi-Fi network.

Step 1: Copy and paste the code below into the Arduino IDE.

#include <WiFi.h>

const char* ssid     = “your-ssid”;
const char* password = “your-password”;   
 
void setup()
{
    Serial.begin(115200);
    delay(10);
 
    // We start by connecting to a WiFi network
 
    Serial.println();
    Serial.println();
    Serial.print(“Connecting to “);
    Serial.println(ssid);
 
    WiFi.begin(ssid, password);
 
    while (WiFi.status() != WL_CONNECTED) {
        delay(500);
        Serial.print(“.”);
    }
 
    Serial.println(“”);
    Serial.println(“WiFi connected”);



139Chapter 3: intermediate project practice - complex projects

    Serial.println(“IP address: “);
    Serial.println(WiFi.localIP());
}  
void loop()
{
  }

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L14_Connectwifi_XIAO_en

Then, replace your-ssid in the code with the name of your Wi-Fi network, and replace your-
password in the code with the password for your Wi-Fi network.

Step 2: Upload the code and open the serial monitor to check whether the development board 
is connected to the Wi-Fi network, as shown in the figure below.

Learn more   

You can read the Wiki documentation for more about using the XIAO ESP32C3.

3.4.3 Task 2: Ping a Specified Website
With the knowledge above, we can now learn how to use the XIAO ESP32C3 to ping a specified 
website.

Step 1: Download and install the ESP32Ping library. Enter the URL https://github.com/marian-
craciunescu/ESP32Ping to go to the GitHub page, click on Code→Download ZIP to download the 
resource pack to your local machine, as shown in the figure below.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_Connectwifi_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_Connectwifi_XIAO_en
https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/
https://github.com/marian-craciunescu/ESP32Ping
https://github.com/marian-craciunescu/ESP32Ping


140 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Step 2: Copy and paste the code below into the Arduino IDE. This code sets the test website to 
www.seeedstudio.com. Remember to replace your-ssid in the code with your Wi-Fi network 
name and your-password in the code with your Wi-Fi password.

////////////////////////////////////////////////////////////////////////////////
// IDE:
//   Arduino 2.0.3
// Platform:

After downloading, open the Arduino IDE, click on Sketch→Include Library→Add .ZIP Library, and 
choose the ZIP file you just downloaded.



141Chapter 3: intermediate project practice - complex projects

//   esp32 2.0.4 - https://github.com/espressif/arduino-esp32
// Board:
//   XIAO_ESP32C3
// Libraries:
//   ESP32Ping 1.6 - https://github.com/marian-craciunescu/ESP32Ping

////////////////////////////////////////////////////////////////////////////////
// Includes

#include <WiFi.h>
#include <ESP32Ping.h>

static constexpr unsigned long INTERVAL = 3000; // [msec.]

static const char WIFI_SSID[] = “your-ssid”;
static const char WIFI_PASSPHRASE[] = “your-password”;

static const char SERVER[] = “www.google.com”;

void setup()
{
    Serial.begin(115200);
    delay(1000);
    Serial.println();
    Serial.println();

    Serial.println(“WIFI: Start.”);
    WiFi.mode(WIFI_STA);
    if (WIFI_SSID[0] != ‘\0’)
    {
        WiFi.begin(WIFI_SSID, WIFI_PASSPHRASE);
    }
    else
    {
        WiFi.begin();
    }
}

void loop()
{
    static int count = 0;

    const bool wifiStatus = WiFi.status() == WL_CONNECTED;
    const int wifiRssi = WiFi.RSSI();

    const bool pingResult = !wifiStatus ? false : Ping.ping(SERVER, 1);
    const float pingTime = !pingResult ? 0.f : Ping.averageTime();

    Serial.print(count);
    Serial.print(‘\t’);
    Serial.print(wifiStatus ? 1 : 0);
    Serial.print(‘\t’);
    Serial.print(wifiRssi);
    Serial.print(‘\t’);
    Serial.print(pingResult ? 1 : 0);
    Serial.print(‘\t’);
    Serial.println(pingTime);
    count++;



142 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

    delay(INTERVAL);
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L14_Ping_XIAO_en

Step 3: Upload the code and open the serial monitor to check the ping results, as shown in the 
figure below.

3.4.4 Project Creation: Using XIAO ESP32C3 to Make HTTP 
GET and HTTP POST Requests

Introduction to HTTP Protocol
HTTP stands for HyperText Transfer Protocol. It’s an application-layer protocol for distributed, 
collaborative, and hypermedia information systems. HTTP is the most widely used network 
transmission protocol on the Internet, and all WWW files must comply with this standard.

HTTP is designed for communication between Web browsers and Web servers, but it can also 
be used for other purposes. HTTP is a protocol that uses TCP/IP to transmit data (such as HTML 
files, image files, query results, etc.).

Despite its wide use, HTTP has significant security flaws, mainly its plain text data transmission 
and lack of message integrity checks. These are exactly the two most critical security aspects in 
emerging applications like online payment, online trading, Internet of Things, etc. Browsers like 
Google Chrome, Internet Explorer, and Firefox issue warnings about insecure connections when 
visiting websites with mixed content composed of encrypted and unencrypted content using 
HTTP.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_Ping_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_Ping_XIAO_en


143Chapter 3: intermediate project practice - complex projects

Introduction to HTTPS Protocol
HTTPS stands for HyperText Transfer Protocol Secure. It’s a protocol for secure communication 
over a computer network. HTTPS communicates via HTTP but uses SSL/TLS to encrypt packets. 
The main purpose of HTTPS is to authenticate the website server’s identity and protect the 
privacy and integrity of the exchanged data.

HTTP Request Methods
According to the HTTP standard, HTTP requests can use multiple request methods.

HTTP1.0 defined three request methods: GET, POST, and HEAD.

HTTP1.1 added six new request methods: OPTIONS, PUT, PATCH, DELETE, TRACE, and CONNECT.

No. Method Description

1 GET Requests specified page information and returns the entity body.

2 HEAD
Similar to a GET request, but the response returned doesn’t contain 
specific content, used to obtain headers.

3 POST

Submits data for processing to a specified resource (e.g., submits a form 
or uploads a file). The data is included in the request body. POST requests 
may result in the creation of a new resource and/or the modification of an 
existing resource.

4 PUT
The data sent from the client to the server replaces the content of a 
specified document.

5 DELETE Requests the server to delete a specified page.

6 CONNECT
Reserved in HTTP/1.1 for proxy servers that can switch the connection to a 
pipe mode.

7 OPTIONS Allows the client to view the server’s capabilities.

8 TRACE
Echoes the request received by the server, mainly used for testing or 
diagnosis.

9 PATCH
It’s a supplement to the PUT method, used to partially update a known 
resource.

We’ve already learned how to connect to a Wi-Fi network using XIAO ESP32C3. Now, let’s try 
some more complex operations based on the network. The following sections will introduce how 
to use XIAO ESP32C3 to send HTTP GET and HTTP POST requests.

Task 3: Using XIAO ESP32C3 to Send an HTTP GET Request
To send an HTTP GET request, a corresponding backend server that supports the request is 



144 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

required. For convenient testing, we can set up a backend server on our own PC, allowing XIAO 
ESP32C3 to send an HTTP GET request to the PC through the local Wi-Fi connection.

There are many ways to set up a backend service. In this case, we’ll use the popular Python web 
framework — FastAPI to set up the backend server. To learn more about this tool, visit its official 
documentation.

Setting Up a Backend Server with FastAPI 

Here is the Python server code.

from typing import Union
from pydantic import BaseModel
from fastapi import FastAPI
import datetime

app = FastAPI()
items = {}

class Sensor_Item(BaseModel):
    name: str
    value: float

@app.on_event(“startup”)
async def startup_event():
    items[“sensor”] = {“name”: “Sensor”,”Value”:0}

@app.get(“/items/{item_id}”)
async def read_items(item_id: str):

    return items[item_id],datetime.datetime.now()

@app.post(“/sensor/”)
async def update_sensor(si: Sensor_Item):
    items[“sensor”][“Value”] = si.value
    return si

@app.get(“/”)
def read_root():
    return {“Hello”: “World”}

This code snippet, implemented using the Python FastAPI framework, can return the latest 
information of the Sensor stored on the backend server when we use a get request on http://
domain/items/sensor. When we use post to send data to http://domain/sensor/, it can 
modify and record the latest Sensor value. The operation steps are as follows:

Step 1: Create a python file named main.py locally, copy and paste the code above into main.py. 
Then, on your PC, open the terminal and execute the following commands to install FastAPI.

pip install fastapi
pip install “uvicorn[standard]”

Step 2: Execute the following command to start the backend service and local monitoring.

uvicorn main:app --reload --host 0.0.0.0

https://fastapi.tiangolo.com/zh/
https://fastapi.tiangolo.com/zh/


145Chapter 3: intermediate project practice - complex projects

- Attention -

When running the command above, make sure the terminal is currently in the directory 
where main:app resides. If there is a prompt during running:

ERROR:    [Errno 48] Address already in use

This means the current address is already occupied and there is an address conflict. You 
can specify a specific port as shown in the command below.

uvicorn main:app --reload --host 0.0.0.0 --port 1234

If the [Errno 48] error still appears, you can modify the port number after port.

The prompt information after the command is successfully run is as follows

INFO:     Will watch for changes in these directories: [‘’]
INFO:     Uvicorn running on http://0.0.0.0:1234 (Press CTRL+C to quit)
INFO:     Started reloader process [53850] using WatchFiles
INFO:     Started server process [53852]
INFO:     Waiting for application startup.
INFO:     Application startup complete.

The backend server for testing is now running normally.

Using XIAO ESP32C3 to Send an HTTP GET Request 

Next, we’ll perform a request test on XIAO ESP32C3.

The GET method should only be used for reading data, and should not be used in operations 
that generate “side effects”. GET requests directly issued by browsers can only be triggered by 
a URL. If you want to carry some parameters outside of the URL in GET, you can only rely on the 
querystring (query string) attached to the URL.

Step 1: Copy and paste the following code into the Arduino IDE. This code sets the tested 
serverName to http://192.168.1.2/items/sensor. The 192.168.1.2 needs to be replaced 
with the IP address of your PC acting as the backend server. To get the IP address of your PC, 
Windows users can enter the ipconfig command in the command line window, and Mac users 
can enter the ifconfig command in the terminal window. Remember to change your-ssid in 
the code to your Wi-Fi network name and your-password to the corresponding Wi-Fi password.

#include “WiFi.h”
#include <HTTPClient.h>

const char* ssid = “your-ssid”;
const char* password = “your-password”;
String serverName = “http://192.168.1.2/items/sensor”;
unsigned long lastTime = 0;
unsigned long timerDelay = 5000;

void setup()
{
    Serial.begin(115200); 

    WiFi.begin(ssid, password);
    Serial.println(“Connecting”);



146 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

    while(WiFi.status() != WL_CONNECTED) {
        delay(500);
        Serial.print(“.”);
    }
    Serial.println(“”);
    Serial.print(“Connected to WiFi network with IP Address: “);
    Serial.println(WiFi.localIP());

    Serial.println(“Timer set to 5 seconds (timerDelay variable), it will take 5 
seconds before publishing the first reading.”);

    Serial.println(“Setup done”);
}

void loop()
{
    if ((millis() - lastTime) > timerDelay) {
        //Check WiFi connection status
        if(WiFi.status()== WL_CONNECTED){
            HTTPClient http;

            String serverPath = serverName ;

            http.begin(serverPath.c_str());

            int httpResponseCode = http.GET();

            if (httpResponseCode>0) {
                Serial.print(“HTTP Response code: “);
                Serial.println(httpResponseCode);
                String payload = http.getString();
                Serial.println(payload);
            }
            else {
                Serial.print(“Error code: “);
                Serial.println(httpResponseCode);
            }

            http.end();
        }
        else {
            Serial.println(“WiFi Disconnected”);
        }
        lastTime = millis();
    }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L14_HTTPget_XIAO_en

- Attention -

We need to change the serverName in the Arduino code to the IP address of the host 
running the backend service. The XIAO ESP32C3 needs to be on the same local area 
network as it. If the local area network IP of the backend server (in this example, your PC) is 
192.168.1.2, then the GET request interface is http://192.168.1.2/items/sensor, and 
other interfaces are similar. If you specified a port when running the backend service and 

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_HTTPget_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_HTTPget_XIAO_en


147Chapter 3: intermediate project practice - complex projects

local monitoring, the GET request interface would be http://192.168.1.2:1234/items/
sensor.

Step 2: Upload the code to XIAO ESP32C3 in the Arduino IDE. After the upload is successful, 
open the serial monitor to check the result returned by our backend server after the GET is 
issued, as shown in the figure below.

The prompt HTTP Response code: 200 means the request has been successful, and our XIAO 
ESP32C3 has successfully gotten data from the server.

Task 4: Using XIAO ESP32C3 to Send an HTTP POST Request
Submit data to a specified resource and request the server to process it (for example, submit 
a form or upload a file). The data is included in the request body. This request may create new 
resources or modify existing resources, or both. Each time it is submitted, the form data is 
encoded into the body of the HTTP request by the browser. The body of a POST request issued 
by a browser mainly has two formats, one is application/x-www-form-urlencoded used to 
transmit simple data, roughly in the format of key1=value1&key2=value2. The other is for 
transmitting files and will use the multipart/form-data format. The latter is adopted because 
the encoding method of application/x-www-form-urlencoded is very inefficient for binary 
data like files.

Next, we will submit experimental data to the backend server built on our machine in a manner 
similar to submitting a form, and verify whether the backend server has received the data.

Step 1: Before starting this example, make sure that the backend server built with FastAPI in the 
previous step is running normally. If not, please refer to the above instructions to start the server 
program.

Step 2: Copy and paste the following code into the Arduino IDE. This code sets the tested 
serverName to http://192.168.1.2/sensor/. The 192.168.1.2 needs to be replaced with 
the IP address of your PC acting as the backend server. Remember to change your-ssid in the 
code to your Wi-Fi network name and your-password to the corresponding Wi-Fi password.



148 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

#include <WiFi.h>
#include <HTTPClient.h>

const char* ssid = “your-ssid”;
const char* password = “your-password”;

const char* serverName = “https://192.168.1.2/sensor/”;

unsigned long lastTime = 0;
unsigned long timerDelay = 5000;

void setup() {
  Serial.begin(115200);

  WiFi.begin(ssid, password);
  Serial.println(“Connecting”);
  while(WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(“.”);
  }
  Serial.println(“”);
  Serial.print(“Connected to WiFi network with IP Address: “);
  Serial.println(WiFi.localIP());
 
  Serial.println(“Timer set to 5 seconds (timerDelay variable), it will take 5 sec-
onds before publishing the first reading.”);
}

void loop() {
  //Send an HTTP POST request every 10 minutes
  if ((millis() - lastTime) > timerDelay) {
    //Check WiFi connection status
    if(WiFi.status()== WL_CONNECTED){
      WiFiClient client;
      HTTPClient http;
    

      http.begin(client, serverName);

      http.addHeader(“Content-Type”, “application/json”);
      int httpResponseCode = http.POST(“{\”name\”:\”sensor\”,\”value\”:\”123\”}”);
     
      Serial.print(“HTTP Response code: “);
      Serial.println(httpResponseCode);
        
      // Free resources
      http.end();
    }
    else {
      Serial.println(“WiFi Disconnected”);
    }
    lastTime = millis();
  }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L14_HTTPpost_XIAO_en

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_HTTPpost_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L14_HTTPpost_XIAO_en


149Chapter 3: intermediate project practice - complex projects

Step 2: Upload the code to XIAO ESP32C3 using the Arduino IDE. After a successful upload, open 
the Serial Monitor to examine the result returned by our backend server in response to the GET 
request. The image below illustrates the process.

The message **HTTP Response code: 200** signifies a successful request. On your local PC, 
open a browser and navigate to **http://192.168.1.2/items/sensor** (please replace the 
IP address according to your actual PC’s IP address, and if a port has been set, append a colon 
followed by the designated port number after the IP address). You should now see the most 
recent data sent by the XIAO ESP32C3. Since XIAO sends data every 5 seconds, you can always 
view the most recent data received by the backend server by refreshing the current page (the 
timestamp of the data will change).

We have now successfully sent data from XIAO ESP32C3 to the local backend server.



150 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

3.5 
Telemetry and Commands using the 
MQTT protocol with XIAO ESP32C3

In the previous section, we learned how to send HTTP GET or POST requests from the XIAO 
ESP32C3 to a local machine on a local area network via Wi-Fi. In this section, we’ll step through: 
communication protocols, Message Queuing Telemetry Transport (MQTT), telemetry (data 
gathered from sensors and sent to the cloud), and commands (messages sent from the cloud to 
a device instructing it to do something).

3.5.1 Background Knowledge

IoT (Internet of Things)
The “I” in IoT stands for Internet—cloud connectivity and services that enable many of the 
functions of IoT devices, from gathering sensor measurements linked to devices, to sending 
messages to control actuators. IoT devices typically connect to a single IoT cloud service using 
standard communication protocols, and this service is tightly integrated with the rest of your IoT 
application, from AI services making intelligent decisions around data, to web applications for 
control or reporting.

Data collected from sensors and sent to the cloud is called telemetry.

IoT devices can also receive information from the cloud. This information typically consists of 
commands—instructions to perform internal actions (such as rebooting or updating firmware) 
or to actuate (e.g., turning on a light).

Communication Protocols
There are many popular  communicat ion 
protocols that IoT devices use to communicate 
with the internet. The most popular are based 
around the publishing/subscribing of messages 
through some agent: IoT devices connect to the 
agent, publish telemetry data and subscribe to 
commands. Cloud services also connect to the 
agent, subscribe to all telemetry information, and 
publish commands to specific devices or groups 
of devices, as shown in the figure below.

MQTT is the most popular communication protocol for IoT devices and will be covered in this 
section. Other protocols include AMQP and HTTP/HTTPS, which we introduced in the previous 
section.

Message Queuing Telemetry Transport (MQTT)



151Chapter 3: intermediate project practice - complex projects

MQTT is short for Message Queuing Telemetry Transport. It is a messaging protocol based 
on the publish/subscribe paradigm under the ISO standard: ISO/IEC PRF 20922. It can be 
seen as a “bridge for data delivery”. It operates on top of the TCP/IP protocol stack and is a 
publish/subscribe type messaging protocol designed for remote devices with poor hardware 
performance and poor network conditions. It is a lightweight, open standard messaging 
transport protocol that can send messages between devices. Originally designed in 1999 for 
monitoring oil pipelines, it was published as an open standard by IBM 15 years later.

The biggest advantage of MQTT is that it provides a real-time and reliable messaging service for 
connecting remote devices with minimal code and limited bandwidth. As a low-overhead, low-
bandwidth consumption instant communication protocol, it is widely used in IoT, small devices, 
mobile applications, and so on.

MQTT has one broker and multiple clients. All clients connect to the broker, which then routes 
messages to the relevant clients. Messages are routed using named topics, not sent directly to 
a single client. Clients can publish to a topic, and any client subscribed to that topic will receive 
the message.

Do some research. If you have a large 
number of IoT devices, how can you 
ensure that your MQTT broker can 
handle all messages?

Some Open Source MQTT Brokers

While we can set up our own MQTT broker if circumstances allow, you might not be ready to 
delve into server and application setup yet. If you’re just learning, you can start with some open 
source MQTT brokers.

Eclipse Mosquitto https://www.mosquitto.org/

This is an open source MQTT broker. Instead of dealing with the complexities of setting up an 
MQTT broker as part of this task, this test broker is publicly available at test.mosquitto.org and 
doesn’t require account setup. It’s a great tool for testing MQTT clients and servers.

https://www.mosquitto.org/
https://test.mosquitto.org/


152 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

shiftr.io

An IoT platform for interconnected projects, quickly connect hardware and software with its 
cloud service and desktop applications. The platform also provides a clear view of all connections, 
topics, and messages in the network through real-time charts. The shiftr.io broker supports 
MQTT and HTTP for publishing, subscribing, and retrieving messages, and the platform supports 
free accounts, enough for us to learn and use. They also provide a public server at public.cloud.
shiftr.io with username public on ports 1883 (MQTT) and 8883 (MQTTS). The animated view of 
connected services and data being exchanged on the public server is very cool, as shown in the 
image below.

HiveMQ

HiveMQ is a cloud-based MQTT platform, offering scalable, secure, and reliable IoT 
communication services. HiveMQ can help enterprises and developers quickly build and 
manage IoT applications, supporting millions of devices and messages.

https://shiftr.io/
https://shiftr.io/
https://public.cloud.shiftr.io/
https://public.cloud.shiftr.io/
https://www.hivemq.com/


153Chapter 3: intermediate project practice - complex projects

3.5.2 Task 1: Connect the XIAO ESP32C3 to the MQTT Broker
The first step to adding internet control to your smart temperature and humidity meter is to 
connect the XIAO ESP32C3 to an MQTT broker.

In this part of the section, you’ll connect your smart temperature and humidity meter from 
Section 2.2 to the internet, enabling it to provide telemetry and be remotely controlled. Later 
in this section, your device will send a telemetry message via MQTT to a public MQTT broker, 
which will be received by some server code you’ll write. This code will check the temperature and 
humidity values, and send a command message to the device, telling it to turn a buzzer on or off.

One real-world use of this setup would be in a large 
indoor space with many temperature and humidity 
sensors, such as a farm. Before deciding to turn on 
air conditioning, data can be gathered from multiple 
temperature and humidity sensors. If only one sensor 
reading exceeds the threshold, but other sensor 
readings are normal, this can prevent the entire air 
conditioning system from being turned on.

Can you think of other situations where an evaluation of data from multiple sensors is required 
before issuing a command?

Remember, this test broker is public and unsecure, and anyone can listen in on what you’re 
publishing, so it should not be used for any data that needs to be kept confidential.

Follow the related steps below to connect your device to the MQTT broker we introduced earlier: 
public.cloud.shiftr.io.

Add the arduino-mqtt library 
Before you start programming the XIAO ESP32C3 with the Arduino IDE, you need to add the 
necessary libraries. Type the library URL https://github.com/256dpi/arduino-mqtt into your 
browser’s address bar to go to the GitHub page. Click on Code→Download ZIP to download the 
resource pack arduino-mqtt-master.zip to your local machine, as shown in the image below.

https://public.cloud.shiftr.io/
https://github.com/256dpi/arduino-mqtt
https://github.com/256dpi/arduino-mqtt


154 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

From the menu bar, select Sketch→Include Library→Add .ZIP Library to add the resource 
pack arduino-mqtt-master.zip you downloaded in the previous step. Continue until you see a 
message indicating successful library loading.

Run the ESP32 MQTT example 
After the library is loaded successfully, open the “ESP32DevelopmentBoard” example in the 
Arduino IDE through the following path: File→Examples→MQTT→ESP32DevelopmentBoard, as 
shown in the image below.

After the example program is opened, you can see the program as shown below. Then change 
the ssid in the code to your Wi-Fi network name, and change the pass in the code to the 
corresponding Wi-Fi password for your Wi-Fi network.

// This example uses an ESP32 Development Board
// to connect to shiftr.io.
//
// You can check on your device after a successful
// connection here: https://www.shiftr.io/try.
//
// by Joël Gähwiler
// https://github.com/256dpi/arduino-mqtt

#include <WiFi.h>
#include <MQTT.h>



155Chapter 3: intermediate project practice - complex projects

const char ssid[] = “ssid”;
const char pass[] = “pass”;

WiFiClient net;
MQTTClient client;

unsigned long lastMillis = 0;

void connect() {
  Serial.print(“checking wifi...”);
  while (WiFi.status() != WL_CONNECTED) {
    Serial.print(“.”);
    delay(1000);
  }

  Serial.print(“\nconnecting...”);
  while (!client.connect(“arduino”, “public”, “public”)) {
    Serial.print(“.”);
    delay(1000);
  }

  Serial.println(“\nconnected!”);

  client.subscribe(“/hello”);
  // client.unsubscribe(“/hello”);
}

void messageReceived(String &topic, String &payload) {
  Serial.println(“incoming: “ + topic + “ - “ + payload);

  // Note: Do not use the client in the callback to publish, subscribe or
  // unsubscribe as it may cause deadlocks when other things arrive while
  // sending and receiving acknowledgments. Instead, change a global variable,
  // or push to a queue and handle it in the loop after calling `client.loop()`.
}

void setup() {
  Serial.begin(115200);
  WiFi.begin(ssid, pass);

  // Note: Local domain names (e.g. “Computer.local” on OSX) are not supported
  // by Arduino. You need to set the IP address directly.
  client.begin(“public.cloud.shiftr.io”, net);
  client.onMessage(messageReceived);

  connect();
}

void loop() {
  client.loop();
  delay(10);  // <- fixes some issues with WiFi stability

  if (!client.connected()) {
    connect();
  }

  // publish a message roughly every second.
  if (millis() - lastMillis > 1000) {



156 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

    lastMillis = millis();
    client.publish(“/hello”, “world”);
  }
}

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L15_ESP32DevelopmentBoard_XIAO_en

Run the example and check the serial monitor for: connected!. If you see a connected client and 
flowing messages in the live chart, your XIAO is continuously sending data to this public MQTT 
broker!

You can see the messages you sent by accessing public.cloud.shiftr.io in your browser. However, 
because this is a public broker, your device will quickly get lost in the crowd.

Keep in mind, this test broker is public and insecure. Anyone can listen to what you’re 
publishing, so it should not be used for anything requiring confidentiality.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L15_ESP32DevelopmentBoa
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L15_ESP32DevelopmentBoa
https://public.cloud.shiftr.io/


157Chapter 3: intermediate project practice - complex projects

3.5.3 Deep Dive into MQTT
Topics can have a hierarchy, and clients can use wildcards to subscribe to different levels of 
different hierarchies. For example: you can send temperature telemetry to the /telemetry/
temperature topic, humidity data to the /telemetry/humidity topic, and then subscribe to 
the /telemetry/* topic in your cloud application to receive both temperature and humidity 
telemetry. When messages are sent, a Quality of Service (QoS) can be specif ied which 
determines the guarantee of message delivery.

• At most once: The message is sent only once, and no additional steps are taken by the client 
and the broker to confirm delivery (Fire and Forget).

• At least once: The message is retried by the sender until it receives an acknowledgment 
(Acknowledged delivery).

• Exactly once: A two-level handshake is performed by the sender and receiver to ensure that 
only one copy of the message is received (Assured delivery).

 In what scenarios might you need to deliver messages on a Fire and Forget basis?

Although MQTT (Message Queuing Telemetry Transport) has “Message Queuing” in its name 
(the first two letters of MQTT), it does not actually support message queues. This means that if 
a client disconnects and then reconnects, it will not receive messages that were sent while it 
was disconnected, except for those messages that it had already begun processing using the 
QoS process. A retain flag can be set on a message. If this flag is set, the MQTT broker will store 
the last message sent on a topic with this flag, and will send it to any clients who subsequently 
subscribe to that topic. This way, clients always receive the latest message.

MQTT also supports a keep-alive feature to check if the connection is still online during long 
intervals between messages.

MQTT connections can be public, or encrypted and protected using usernames, passwords, or 
certificates.

MQTT communicates over TCP/IP, the same underlying network protocol as HTTP, but on a 
different port. You can also communicate with web applications running in a browser over 
MQTT on websockets, or in situations where firewalls or other network rules block standard 
MQTT connections.

3.5.4 Telemetry
The word “telemetry” comes from Greek roots meaning “remote measurement”. Telemetry 
refers to the act of collecting data from sensors and sending it to the cloud.

One of the earliest telemetry devices was 
invented in France in 1874, sending real-
time weather and snow depth data f rom 
Mont Blanc to Paris. As there was no wireless 
technology at the time, it used a physical wire.

Let’s go back to the smart thermostat example 
from Section 1.1.

The thermostat has temperature sensors to 
collect telemetry data. It likely has a built-in 



158 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

temperature sensor and may connect to multiple external temperature sensors via wireless 
protocols such as Low Energy Bluetooth (BLE).

An example of the telemetry data it sends could be:

Name Value Description

AC_Temperature 18°C
The temperature measured by the thermostat’s built-in 
temperature sensor

Living_Room_
Temperature

19°C
The temperature measured by a remote temperature 
sensor named livingroom , indicating the room it is in

Bedroom_Temperature 21°C
The temperature measured by a remote temperature 
sensor named bedroom , indicating the room it is in

Then, the cloud service can use this telemetry data to decide what commands to send to control 
cooling or heating.

3.5.5 Task 2: Sending Telemetry Information from XIAO to 
MQTT Broker

The next part of adding internet control to your smart hygrothermograph is sending the 
temperature and humidity telemetry data to the telemetry topic of the MQTT broker. Replace 
the XIAO of your smart hygrothermograph device from Section 2.2 with the XIAO ESP32C3, as 
shown in the image below.

Load the following program into the Arduino IDE to test sending telemetry data from your 
device to the MQTT broker. Note that in this example, we’re trying a different MQTT broker than 
in Task 1: broker.hivemq.com, and we’ve set XIAO_ESP32C3_Telemetry/ as the subscription 
name.

////////////////////////////////////////////////////////////////////////////////
// IDE:
//   Arduino 2.0.0
// Platform:
//   esp32 2.0.5 - https://github.com/espressif/arduino-esp32
// Board:
//   XIAO_ESP32C3
// Libraries:
//   MQTT 2.5.0 - https://github.com/knolleary/pubsubclient
//   ArduinoJson 6.19.4 - https://github.com/bblanchon/ArduinoJson

////////////////////////////////////////////////////////////////////////////////



159Chapter 3: intermediate project practice - complex projects

// Includes

#include <WiFi.h>
#include <PubSubClient.h>
#include <Wire.h>
#include “DHT.h”
#define DHTTYPE DHT20   
DHT dht(DHTTYPE); 

const char* ssid = “ssid”;
const char* password = “pass”;

const char* mqtt_server = “broker.
hivemq.com”;

WiFiClient espClient;
PubSubClient client(espClient);
long lastMsg = 0;
char msg[50];
int value = 0;

float temperature = 0;
float humidity = 0;

void setup() {
  Serial.begin(115200);
  setup_wifi();
  client.setServer(mqtt_server, 1883);
  Wire.begin();
  dht.begin();
}

void setup_wifi() {
  delay(10);
  // We start by connecting to a WiFi 
network
  Serial.println();
  Serial.print(“Connecting to “);
  Serial.println(ssid);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECT-
ED) {
    delay(500);
    Serial.print(“.”);
  }

  Serial.println(“”);
  Serial.println(“WiFi connected”);
  Serial.println(“IP address: “);
  Serial.println(WiFi.localIP());
}

void reconnect() {
  // Loop until we’re reconnected
  while (!client.connected()) {

    Serial.print(“Attempting MQTT con-
nection...”);
    // Attempt to connect
    if (client.connect(“XIAO_ESP32”)) {
      Serial.println(“connected”);
      // Subscribe
      client.subscribe(“XIAO_ESP32/
LEDOUTPUT”);
    } else {
      Serial.print(“failed, rc=”);
      Serial.print(client.state());
      Serial.println(“ try again in 5 
seconds”);
      // Wait 5 seconds before retry-
ing
      delay(5000);
    }
  }
}

void loop() {
    
  if (!client.connected()) {
    reconnect();
  }
  client.loop();

  long now = millis();
  float temp_hum_val[2] = {0};
  if (now - lastMsg > 5000) {
    lastMsg = now;

    dht.readTempAndHumidity(temp_hum_
val);
    temperature = temp_hum_val[1];   
  
    char tempString[8];
    dtostrf(temperature, 1, 2, temp-
String);
    Serial.print(“Temperature: “);
    Serial.println(tempString);
    client.publish(“XIAO_ESP32C3_Te-
lemetry/Temperaturedataread”, temp-
String);

    humidity = temp_hum_val[0];
    
    char humString[8];
    dtostrf(humidity, 1, 2, hum-
String);
    Serial.print(“Humidity: “);
    Serial.println(humString);
    client.publish(“XIAO_ESP32_Teleme-
try/Humiditydataread”, humString);
  }

}



160 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Get this program from Github https://github.com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L15_MQTTTelemetry_XIAO_en

Because this example relies on the PubSubClient.h library, if you try to compile it directly, you 
will encounter the error “PubSubClient.h: No such file or directory”. To resolve this issue, follow 
the steps below to install the library.

1. Open the Arduino IDE.

2. Go to “Sketch” -> “Include Library” -> “Manage Libraries”.

3. In the Library Manager, type “PubSubClient” in the search bar.

4. Look for the “PubSubClient” library by Nick O’Leary and click on it.

5. Click the “Install” button to install the library.

Then modify the ssid in the code to your Wi-Fi network name and pass to your Wi-Fi password 
corresponding to your Wi-Fi network name.

After successfully uploading the program, open the serial monitor. If all goes well, you will see 
the device start sending temperature and humidity data, as shown in the image below.

How can you see the sensor data from another platform? There are many ways, such as MQTT 
X. After downloading and installing the software suitable for your PC system, the interface is as 
shown in the image below.

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L15_MQTTTelemetry_XIAO_
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L15_MQTTTelemetry_XIAO_
https://mqttx.app/
https://mqttx.app/


161Chapter 3: intermediate project practice - complex projects

Clicking the + New Connection button will bring you to the connection creation window, as 
shown in the image below. Fill in XIAO-DHT20 in the Name box as the connection name. The 
Host is broker.hivemq.com that we set in the program, no other settings are needed, click 
Connect in the upper right corner.

Create a new subscription, showing all the information under XIAO_ESP32C3_Telemetry/, as 
shown in the image below.

Now, we can see the telemetry data sent from XIAO ESP32C3, as shown in the image below.



162 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

How often should telemetry be sent?
One question that needs careful consideration with telemetry is: how often should you measure 
and send data? The answer is — it depends on the needs of the device being monitored 
and the task at hand. If you measure frequently, you can indeed respond to changes in the 
measurements more quickly, but this would cause your device to consume more power, more 
bandwidth, generate more data, and require more cloud resources to handle. You need to strike 
a balance between measuring often enough but not too often.

For a thermostat, measuring every few minutes might be enough because the temperature 
isn’t likely to change frequently. If you only measure once a day, then you might be heating your 
house for nighttime temperatures on a sunny day, and if you measure every second, you’d have 
thousands of unnecessary repeated temperature measurements which will eat up users’ internet 
speed and bandwidth (which is a problem for people with limited bandwidth plans), and also 
consume more power, which is a problem for devices like remote sensors that rely on battery 
power, and further increase the cost of cloud computing resources to process and store them.

If you’re monitoring data around a machine in a factory that might cause catastrophic damage 
and millions in lost revenue if it fails, then measuring multiple times a second may be necessary. 
Wasting bandwidth is better than missing telemetry data that could signal the need to stop and 
repair before a machine fails.

In this situation, you could consider first using an edge device to handle the telemetry data 
to reduce dependence on the internet.

Losing connection
Internet connections can be unreliable, and it’s common to lose signal. In this case, what should 
an IoT device do? Should it lose data, or should it store data until the connection is restored? 
Again, the answer is — it depends on the device being monitored.

For a thermostat, data is likely lost once a new temperature measurement has been made. If the 
current temperature is 19°C, the heating system doesn’t care that the temperature 20 minutes 
ago was 20.5°C; it’s the current temperature that dictates whether the heat should be turned on 
or off.

For some machines, you may want to retain this data, especially if it’s being used to look for 
trends. Some machine learning models can identify anomalies in data streams by looking at a 
defined time period (e.g., the last hour). This is often used for predictive maintenance, looking 
for signs that something might be about to fail so you can repair 
or replace it before disaster strikes. You may want every point of 
telemetry from a machine sent so it can be used for anomaly 
detection, so once an IoT device can reconnect, it will send all the 
telemetry data generated during the internet outage.

IoT device designers should also consider whether an IoT device 
can operate during an internet outage or if it loses signal due to 
location. If a smart thermostat is unable to send telemetry data 
to the cloud due to an internet outage, it should be able to make 
some limited decisions to control heating.

This Ferrari became a brick when someone tried to update it in 
an underground car park… but there was no cell signal there.



163Chapter 3: intermediate project practice - complex projects

For MQTT handling connection interruptions, if necessary, the device and server code will need 
to be responsible for ensuring message delivery, for example, requiring all sent messages to be 
replied to by an additional message on the reply topic, and if not, to manually queue them for 
later resending.

3.5.6 Commands
Commands are messages sent by the cloud to 
a device instructing it to do something. Most 
often, this involves providing some output via 
an actuator, but it could be an instruction to 
the device itself, such as to reboot, or to collect 
additional telemetry data and send it as a 
response to the command.

A thermostat could receive a command from 
the cloud to turn on the heat. Based on the 
telemetry data from all sensors, if the cloud 
service has decided that the heat should 
be turned on, then it sends the appropriate 
command.

3.5.7 Task 3: Send Commands to XIAO via MQTT Broker
Having mastered telemetry, the next step is to send commands to IoT devices via an MQTT 
broker. In this task, we will try to use a computer with MQTT broker, often called a host computer, 
to send specific characters and let the Wi-Fi connected XIAO ESP32C3 control a buzzer attached 
to an expansion board to emit a warning sound.

In the Arduino IDE, load the following program to test sending specif ic characters (f irst 
character is ‘0’) from the MQTT broker to activate the buzzer. We use the MQTT broker: broker.
hivemq.com in this example.

////////////////////////////////////////////////////////////////////////////////
// IDE:
//   Arduino 2.0.0
// Platform:
//   esp32 2.0.5 - https://github.com/espressif/arduino-esp32
// Board:
//   XIAO_ESP32C3
// Libraries:
//   MQTT 2.5.0 - https://github.com/knolleary/pubsubclient
//   ArduinoJson 6.19.4 - https://github.com/bblanchon/ArduinoJson
//  https://github.com/Seeed-Studio/Seeed_Arduino_MultiGas

////////////////////////////////////////////////////////////////////////////////
// Includes

#include <WiFi.h>
#include <PubSubClient.h>
#include <Wire.h>



164 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

const char* ssid = “ssid”;
const char* password = “pass”;

const char* mqtt_server = “broker.
hivemq.com”;

WiFiClient espClient;
PubSubClient client(espClient);
long lastMsg = 0;
char msg[50];
int value = 0;

int speakerPin = A3;

void setup_wifi() {
  delay(10);
  // We start by connecting to a WiFi 
network
  Serial.println();
  Serial.print(“Connecting to “);
  Serial.println(ssid);

  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECT-
ED) {
    delay(500);
    Serial.print(“.”);
  }

  Serial.println(“”);
  Serial.println(“WiFi connected”);
  Serial.println(“IP address: “);
  Serial.println(WiFi.localIP());
}

void callback(char* topic, byte* pay-
load, unsigned int length) {
  Serial.print(“Message arrived [“);
  Serial.print(topic);
  Serial.print(“] “);
  for (int i=0;i<length;i++) {
    Serial.print((char)payload[i]);
  }
  if((char)payload[0]==’0’){
    Serial.print(“  RUN”);
    digitalWrite(speakerPin, HIGH);
    delay(2000);
    digitalWrite(speakerPin, LOW);

    delay(100);  
  }
  Serial.println();
}

void setup() {
  Serial.begin(115200);
  pinMode(speakerPin, OUTPUT);
  setup_wifi();
  client.setServer(mqtt_server, 1883);
  client.subscribe(“XIAO_ESP32/Re-
cieve”);
  client.setCallback(callback);
}

void reconnect() {
  // Loop until we’re reconnected
  while (!client.connected()) {
    Serial.print(“Attempting MQTT con-
nection...”);
    // Attempt to connect
    if (client.connect(“XIAO_ESP32”)) {
      Serial.println(“connected”);
      // Subscribe
      
    } else {
      Serial.print(“failed, rc=”);
      Serial.print(client.state());
      Serial.println(“ try again in 5 
seconds”);
      // Wait 5 seconds before retry-
ing
      delay(5000);
    }
  }
}

void loop() {
    
  if (!client.connected()) {
    reconnect();
    client.subscribe(“XIAO_ESP32/Re-
cieve”);
  }
  client.loop();

}

Get this program from Github https://github.
com/mouseart/XIAO-Mastering-Arduino-and-
TinyML/tree/main/code/L15_MQTTCommand_
XIAO_en

https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L15_MQTTCommand_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L15_MQTTCommand_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L15_MQTTCommand_XIAO_en
https://github.com/mouseart/XIAO-Mastering-Arduino-and-TinyML/tree/main/code/L15_MQTTCommand_XIAO_en


165Chapter 3: intermediate project practice - complex projects

Then modify the ssid in the code to your Wi-Fi network name, and modify the pass in the code 
to the Wi-Fi password corresponding to your Wi-Fi network name.

The logic of the program execution is explained as follows:

client.setServer(mqtt_server, 1883);
client.subscribe(“XIAO_ESP32/Recieve”);
client.setCallback(callback);

During the setup stage, the connection between XIAO and the MQTT server is initialized, and 
the topic subscription settings and callback functions are set. Here we subscribe to the topic 
XIAO_ESP32/Recieve as an example. When we send a message to this topic from the host 
computer, the corresponding callback function callback will be executed:

void callback(char* topic, byte* payload, unsigned int length) {
  Serial.print(“Message arrived [“);
  Serial.print(topic);
  Serial.print(“] “);
  for (int i=0;i<length;i++) {
    Serial.print((char)payload[i]);
  }
  if((char)payload[0]==’0’){
    Serial.print(“  RUN”);
    digitalWrite(speakerPin, HIGH);
    delay(2000);
    digitalWrite(speakerPin, LOW);
    delay(100);  
  }
  Serial.println();
}

Here it will first print out the received message, then extract the character at position 0. When 
the character at position 0, which is the first character, is 0, it satisfies the condition for the if 
statement to perform an action. Here we connect the XIAO ESP32C3 and the expansion board 
together. When the condition is met, the buzzer on the expansion board will change its level 
briefly and beep for 2 seconds, while sending the prompt message RUN to the serial port.

In the process of development and testing by readers, you can also try to integrate the receive 
and send functions 
of  MQTT,  and send 
messages to specif ic 
topics in the callback 
function, so that the 
sender  can ensure 
that XIAO has received 
the message.

On the host computer, 
we use MQTT X to test. 
O p e n  M QT T  X ,  t h e 
interface is as shown in 
the following figure.

https://mqttx.app/


166 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Click the + New Connection button to enter the connection creation window, as shown in the 
following figure. Fill in the Name box with XIAO-MQTT-Recieve as the connection name. Host is 
the broker.hivemq.com we set in the program, and nothing else needs to be set. Click Connect 
at the top right corner. The interface after successful connection is as shown in the following 
figure.

Now we can publish messages to the specified topic, which is the topic XIAO_ESP32/Recieve 
we subscribed to on XIAO. Then we enter 00 in the input box of XIAO_ESP32/Recieve at the 
lower right corner of the interface, and then click the send button in  the lower  r ight 
corner.

At this time, in the serial monitor on the PC side, you can see the prompt message received from 
XIAO, as shown in the following figure, and prompt RUN, the buzzer will sound for 2 seconds, 
indicating that the message has been received.



167Chapter 3: intermediate project practice - complex projects

Now, we have successfully driven the buzzer on the expansion board connected to the Wi-Fi 
connected XIAO ESP32C3 through the instruction sent by the PC side.

The action of the buzzer can be replaced with the control of any peripheral to achieve the 
desired function.

Lost connection
If a cloud service needs to send a command to an offline IoT device, what should it do? Again, 
the answer depends on the situation. If the latest command overwrites the previous one, the 
previous command may be ignored. If the cloud service sends a command to turn on the 
heating, and then sends another command to turn off the heating, then the turn-on command 
can be ignored and does not need to be resent.

If the commands need to be processed in order, such as first moving the robot arm up and then 
closing the gripper, then they need to be sent in order once the connection is restored.

How can device or server code ensure that commands are always sent and processed in 
order through MQTT if needed?

Using XIAO’s Bluetooth function

XIAO nRF52840, XIAO nRF52840 Sense, XIAO ESP32C3 all support Bluetooth function, you 
can refer to the related Wiki documents to learn how to use the Bluetooth function.

• Bluetooth Usage on Seeed Studio XIAO ESP32C3
• Bluetooth Usage (Seeed nRF52 Boards Library)
• Bluetooth Usage (Seeed nrf52 mbed-enabled Boards Library)

https://wiki.seeedstudio.com/XIAO_ESP32C3_Bluetooth_Usage/
http://Bluetooth Usage (Seeed nRF52 Boards Library)
https://wiki.seeedstudio.com/XIAO-BLE-Sense-Bluetooth-Usage/


168 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Chapter 4:  
Project Practice Advanced - 
TinyML Applications

Among the XIAO series products, the Seeed Studio XIAO nRF52840 Sense has Bluetooth 
5.0 wireless connectivity, low power consumption, and onboard 6-axis IMU and PDM 
microphone sensors. Besides, the XIAO ESP32S3 Sense further integrates PSRAM, a 
camera, a digital microphone, and SD card support.

Those characteristics make those devices powerful tools for TinyML (Tiny Machine 
Learning) projects.

TinyML solves problems in a completely different way from traditional programming 
methods. This chapter will introduce you to this cutting-edge field by walking through 
the entire TinyML workflow, from data collection, pre-processing, model definition, 
training, testing, and deployment to allow actual inference on the physical world.



169Chapter 4: project practice advanced - tinyml applications

4.1 
Understanding TinyML and Edge Impulse 
Studio

This section will explain embedded machine learning, the differences between TinyML 
and other artif icial intelligence, and some essential applications. This section will help you 
understand what TinyML is and why we need it. Edge Impulse Studio is one of the tools that 
allows developers to create next-generation intelligent device solutions through embedded 
machine learning. This section will introduce you to this tool and help you understand the basic 
steps to build an embedded machine-learning model.

4.1.1 Common Terms
In addition to TinyML, we often hear conceptually similar terms such as edge computing, edge 
AI, embedded machine learning, etc. So, before learning TinyML, you need to understand these 
terms and their meanings.

Embedded Systems
An embedded system is a computer used only to solve a few particular problems and is 
challenging to change. The term “embedded” means that it is built into the system. It is a 
permanent part of the more extensive system. It usually doesn’t look like a computer; in most 
cases, it doesn’t have a keyboard, monitor, or mouse. But like any computer, it has a processor, 
software, input, and output.

Embedded systems are computers controlling 
various physical and electronic devices, 
and now they are almost everywhere. From 
the Bluetooth headphones you use, home 
audio-visual equipment, game consoles, air 
conditioners, sweeping robots, rice cookers, 
and washing machines to the control units 
of  e lectr ic  vehicles  to  communicat ion 
equipment, factory equipment, medical 
equipment, off ice places, and even military 
equipment, almost any electrically driven 
device has the presence of embedded systems. 
Embedded software is the software running 
on them, and the following figures show some 
scenes where you can see embedded systems.

Embedded systems can be large or small, as small as the microcontroller controlling the digital 
watch and as large as the embedded computer in the autonomous car. Unlike general-purpose 
computers such as laptops or smartphones, embedded systems usually perform a specif ic 
specialized task.



170 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

- Do some research -

Look around you, what devices might have embedded systems in them?

The size and complexity of embedded systems vary, but they all contain three basic components:

• Hardware: These systems use microprocessors and microcontrollers as their hardware. 
Microprocessors are similar to microcontrollers because they are both related to CPUs (central 
processing units), and CPUs are combined with other essential computer parts (such as 
storage chips and digital signal processors (DSPs)). Microcontrollers integrate all these parts 
into a single chip.

• Firmware and Software: The complexity of the system software differs from industrial-grade 
microcontrollers and embedded IoT systems, on the other hand, they usually run relatively 
basic software, using very little memory.

• Real-Time Operating System (RTOS): These systems, especially the more minor, often do 
not include these operation systems. By supervising software during program execution and 
establishing standards, RTOS determines how the system operates.

Embedded systems are often also constrained by their deployment environment. For example, 
many embedded systems need to run on battery power. Hence, their design needs to consider 
energy efficiency metrics - perhaps memory is limited, or the clock speed is extremely slow.

The challenge for engineers programming for embedded systems is often implementing 
functional requirements within these limited hardware and environmental resource constraints. 
You must consider hardware resource constraints when learning to build your TinyML project 
model for XIAO later.

Edge Computing and Internet of Things (IoT)
The concept of “Edge” is relative to the “Center.” In the early days, computers like the ENIAC 
(Electronic Numerical Integrator and Computer), built in 1945, were massive, weighing nearly 30 
tons and occupying 170 square meters.

Staff programming the ENIAC



171Chapter 4: project practice advanced - tinyml applications

The processor manual cover for the minicomputer 
pdp11/70, showing the host and connected terminals.

The 70s Wang computer, once a world leader in 
market share. (Personal computer Wang 2200 PCS II. 
It is located in the Belgrade Museum of Technology.)

Google’s data center located on the outskirts of Pryor, 
Oklahoma, USA

At this stage, computational tasks were 
centralized on the core machine. These large 
computers evolved into “minicomputers,” 
typically consisting of a central host and 
multiple terminals connected to the host. 
Multiple users could issue computational 
instructions through the terminals, but most 
of the computation still occurred on the 
central host. As time passed, the terminals 
became more complex and took over more 
and more functions of the central computer.

I t  wasn’ t  unt i l  the  advent  of  personal 
computers that computation truly expanded 
to the “edge.” The rapid development of 
personal computers also led to the decline 
of those massive machines, and the scale of 
human computation quickly tilted towards the 
“edge.”

The emergence and development of the 
Internet led to a large concentration of 
servers to provide a variety of data storage 
and computational services, search engines, 
st reaming v ideo,  onl ine games,  socia l 
networks, etc. The highly centralized cloud 
computing era had arrived, and many internet 
service providers owned massive data center 
rooms.

In theory, all our computing services can be completed in the cloud. But these cloud-based 
services are useless in many areas without internet connections or when the internet goes down.

The computers we use for work and entertainment are just some devices connected to these 
cloud services. As of 2021, there were as many as 12.2 billion connected devices worldwide, and 
we call this network of devices IoT (Internet of Things). It includes everything you can and can’t 
think of, such as mobile phones, smart speakers, connected security cameras, cars, containers, 
pet trackers, industrial sensors, etc.



172 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

These devices are embedded systems containing microprocessors running software written by 
embedded software engineers. We can also call them edge devices because they are located 
at the edge of the network. Computation 
performed on edge devices is known as 
Edge Computing. The following illustration 
expresses the relationship between the cloud 
and edge devices.

Devices at the network edge can communicate 
with the cloud, edge inf rastructure, and 
each other. Edge applications typically span 
multiple locations on this map. For example, 
data may be sent from an IoT device equipped 
with sensors to a local  edge server for 
processing.

Artificial Intelligence (AI)
Artificial Intelligence (AI) is a vast concept and is difficult to define. In a vague sense, it’s about 
making things possess human-like intelligence and thinking abilities. But even the definition 
of intelligence itself is disputed, and this is a cutting-edge field with many unknowns, which 
readers are welcome to explore on their own. For the convenience of understanding the 
following concepts, this book provides a relatively narrow definition of AI: an artificial system 
capable of making wise decisions based on specific inputs.

Machine Learning (ML)
Machine Learning (ML) primarily aims to design and analyze algorithms that allow computers 
to “learn” automatically. ML algorithms are a class of algorithms that automatically analyze and 
learn patterns from data and use these patterns to predict unknown data.

Take a typical example of machine learning—continuous motion recognition. In Section 2.4, 
we learned about the triaxial accelerometer. The image below shows a Wio Terminal with an 
embedded triaxial accelerometer and screen. We can use it to record accelerometer data for 
several different movements: waving (wave), flipping (flip), and idling (idle).

Looking at the data generated from these different movements, you can find a method for the 

https://www.seeedstudio.com/Wio-Terminal-p-4509.html


173Chapter 4: project practice advanced - tinyml applications

machine to recognize these motion patterns. The traditional way involves manually analyzing 
and checking the data, identifying specif ic logical rules for different movements through 
mathematical analysis, and then writing a recognition program to perform the desired action 
based on these rules. Sounds complicated, doesn’t it?

Fortunately, we now have machine learning methods. Training and testing these data will yield 
an algorithm, and the device only needs to run this algorithm to automatically complete our 
desired “inference” process and deliver results. From the current state of machine learning 
development, this method is exceptionally proficient in handling complex data scenarios. We 
will learn more about this process in subsequent sections.

Edge AI
As the term suggests, Edge AI combines edge devices and artif icial intelligence. The 
development of Edge AI stems from the pursuit of lower system power consumption and 
higher eff iciency. For example, popular smartwatches or f itness bands often have built-in 
accelerometers that generate hundreds of readings per second—a large volume of data—
and continuous data reading is required to recognize movement states. If the recognition of 
movements is performed in the cloud, the smartwatch would need to consume a lot of energy 
to send data to the cloud, and there would usually be a delay in receiving the result. This makes 
the entire computational process uneconomical—high energy consumption and latency. This 
latency can also prevent us from effectively using data for real-time feedback.

Edge AI solves this problem by recognizing movements on the smartwatch or band itself. This 
allows for quick results without relying on the cloud. If necessary data needs to be uploaded 
to the cloud, there’s no need to send a large amount of sensor data; instead, just the essential 
motion recognition results are sent, signif icantly reducing communication volume and 
consuming less electric power.

Embedded Machine Learning
Embedded Machine Learning is the art and science of running machine learning models on 
embedded systems. When we talk about embedded machine learning, we typically refer to 
machine learning inference—the process of taking input and making a prediction (for example, 
guessing motion status based on accelerometer data). The training part is typically still 
performed on traditional computers.

Furthermore, embedded systems usually have limited memory. This challenges running many 
machine learning models, which often have high demands for read-only memory (storing the 
model) and RAM (handling intermediate results generated during inference). They often need 
more computing capability as well. Many machine learning models are quite compute-intensive, 
which can also pose problems.

Tiny Machine Learning (TinyML)
TinyML involves implementing the inference 
process of machine learning on the most 
restricted embedded hardware, such as 
Micro Processor Units (MCUs), Digital Signal 
Processors (DSPs), and Field Programmable 
Gate Arrays (FPGAs).

The image below helps to understand the 
relationship between these terms better.



174 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Advantages and Operation of Edge AI
For many years, the Internet of Things (IoT) has been referred to as “machine-to-machine” (M2M). 
It involves connecting sensors and various computing devices for process automation control 
and has been widely adopted in industrial machinery and processes.

Machine learning offers the ability to make further progress in automation by introducing 
models that can make predictions 
o r  d e c i s i o n s  w i t h o u t  h u m a n 
intervention. Due to the complexity of 
many machine learning algorithms, 
the traditional integration of IoT and 
ML involves sending raw sensor data 
to a central server, which performs the 
necessary inference computations to 
generate predictions.

This configuration might be acceptable for low volumes of raw data and complex models. 
However, several potential problems have emerged:

• Transmitting extensive sensor data (like images) can consume a lot of network bandwidth.

• Data transmission also requires power.

• Sensors must continuously connect to the server to provide near real-time machine learning 
computation.

Given these challenges and the rapid development of machine learning, Edge AI has begun to 
emerge. Jeff Bier, founder of Edge AI and Vision Alliance, outlined five factors that push artificial 
intelligence to the edge in his article What’s Driving AI and Vision to the Edge —BLERP, which 
stands for Bandwidth, Latency, Economics, Reliability, and Privacy.

• Bandwidth: If you have a commercial greenhouse, workshop, or mall with hundreds of 
cameras, it’s impossible to send this information to the cloud for processing—the data would 
choke any type of internet connection you have. You simply need to process it locally.

• Latency: The latency here refers to the time between the system receiving sensor input and 
making a response. Consider autonomous vehicles: if a pedestrian suddenly appears at a 
crosswalk, the car’s computer might only have a few hundred milliseconds to decide. There’s 
not enough time to send the image to the cloud and await a response.

• Economics: Cloud computing and communication are getting better and cheaper, but they 
still cost money—possibly a lot of money, especially regarding video data. Edge computing 
reduces the amount of data that must be sent to the cloud and the computation workload 
once it arrives, significantly reducing costs.

• Reliability: Think of a home security system with facial recognition—even if there’s an 
internet outage, you still want it to allow your family members to enter. Local processing 
makes this possible and gives the system more robust fault tolerance.

• Privacy: The rapid development of edge audio and video sensors has caused severe privacy 
issues, and sending this information to the cloud dramatically increases these concerns. The 
more information that can be processed locally, the less potential for abuse—what happens 
on the edge stays on the edge.

In most cases, training a machine learning model involves a three-step process of Model → 
Training → Inference, where obtaining the model requires more intensive computation than 
executing inference.

https://en.wikipedia.org/wiki/Machine_to_machine
https://www.eetasia.com/whats-driving-ai-and-vision-to-the-edge/


175Chapter 4: project practice advanced - tinyml applications

• Model: A mathematical formula trying to generalize information from a given dataset.

• Training: The process of automatically updating the parameters from data within a model. 
This model “learns” to make conclusions and generalize about the data.

• Inference: Providing new, unseen data to a trained model to make predictions, decisions, or 
classifications.

Thus, under normal circumstances, we would rely on powerful server clusters to train new 
models, constructing datasets from raw data collected on-site (images, sensor data, etc.) and 
using this dataset to train our machine learning models.

- Attention -

In some cases, we can train on the device side. However, this is generally unfeasible due to 
the memory and processing limitations of such edge devices.

Once we have a trained model, 
which is just a mathematical 
m o d e l  ( i n  t h e  f o r m  o f  a 
software library), we can deploy 
it to our intelligent sensors or 
other edge devices. We can use 
this model to write f irmware 
or software to col lect new 
raw sensor readings, perform 
inferences, and take actions 
based on these  inference 
results, as shown in the figure 
below. These actions could 
be self-driving cars, moving 
ro b o t i c  a r m s ,  o r  s e n d i n g 
notifications to users about engine failures. Since inference is performed locally on the edge 
device, the device does not need to maintain a network connection (the optional connection is 
shown as a dotted line in the chart).

4.1.3 Applications of Edge AI
Running machine learning models on edge devices without staying connected to a more 
powerful computer opens up possibilities for 
various automated tools and more intelligent 
IoT systems. Here are a few examples of edge 
AI enabling innovation in multiple industries.

Environmental Protection

• Smart grid monitoring to detect faults in 
power lines early

• Wildlife tracking and behavior research

• Forest fire detection and early warning

Agriculture

• Precision weeding, fertilization, pesticide 
application, or irrigation

Benjamin Cabé used TinyML technology to create 
an artificial nose thatdistinguishes between various 

distinct smells.



176 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

• Automatic recognition of irrigation needs

• Automatic recognition of crop status and disease/insect infestation conditions

Smart Buildings

• Monitoring of intrusions and recognition of abnormal states

• Air conditioning systems that adapt based on the number of people in a room

Health and Sports

• Wearable devices that track sleep and exercise conditions

• Portable medical devices

• Gesture recognition

Human-Machine Interaction

• Voice activation word detection

• Gesture and device motion recognition for auxiliary control

Industry

• Automatic safety helmet detection

• Machine, equipment, and facility condition monitoring

• Production line defect detection

• Position and motion state detection

The computational power typically required to perform machine learning inference at the edge 
is often more significant than simply polling sensors and transmitting raw data. However, locally, 
achieving such computations requires less power than sending raw data to a remote server.

The following table provides some suggestions on the type of hardware needed to perform 
machine learning inference at the edge, depending on the required application.

[Source: https://docs.edgeimpulse.com/docs/concepts/what-is-edge-machine-learning]

XIAO for this kind of task

Low-End MCU
High-End 

MCU

NPU
(Neural Network 

Processor)

MPU
(Microprocessor)

GPU
(Graphics 
Processor)

Task
Sensor Fusion 
Classification

Audio 
Classification

Image 
Classification

Complex Images 
or Sound and 
simple Videos

Video 
Classification

Memory 18KB 50KB 256KB 1MB+ 1GB+

Sensors

Audio

Images

Videos

XIAO
nRF52840 

Sense

nRF52840 
& ESP32S3 

Sense
ESP32S3 Sense ESP32S3 Sense —

https://docs.edgeimpulse.com/docs/concepts/what-is-edge-machine-learning


177Chapter 4: project practice advanced - tinyml applications

Embedded hardware is also rapidly evolving, and it’s expected that the contents of this 
table will change soon.

4.1.4 Introduction to Edge Impulse Studio
Edge Impulse was founded by Zach Shelby and Jan Jongboom in 2019. It is the leading edge 
device machine learning development platform. This platform allows developers to create 
and optimize solutions with real-world data, 
making the process of building, deploying, 
and scaling embedded ML applications more 
accessible and faster than ever before.

You can visit Edge Impulse’s official website for more information about this tool and check the 
official documentation for a basic explanation.

In the following sections, we will learn to achieve continuous 
motion recognition with the on-board 6-axis accelerometer of the 
XIAO nRF52840 Sense shown below and voice keyword wake-up 
functionality using the on-board PDM microphone.

Computer Vision applications such as Image Classif ication and 
Object Detection will also be implemented using the camera of the 
XIAO ESP32S3 Sense shown below.

https://www.edgeimpulse.com/
https://edgeimpulse.com/
https://www.seeedstudio.com/Seeed-XIAO-BLE-Sense-nRF52840-p-5253.html


178 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

4.2 
Anomaly Detection & Motion 
Classification

4.2.1 Things used in this project

Hardware components

Seeed Studio XIAO nRF52840 Sense × 1

Software apps and online services

• Edge Impulse Studio• Arduino IDE

4.2.2 Introduction
As you learned in the previous section, microcontrollers (MCUs) are very cheap electronic 
components, usually with just a few kilobytes of RAM, designed to use tiny amounts of energy. 
They can be found in almost any consumer, medical, automotive, and industrial device. Over 
40 billion microcontrollers will be sold this year, and there are probably hundreds of billions in 
service nowadays. However, these devices get little attention because they’re often only used 
to replace the functionality of older electro-mechanical systems in cars, washing machines, or 
remote controls. More recently, with the Internet of Things (IoT) era, a significant part of those 
MCUs is generating “quintillions” of data that, in its majority, is not used due to the high cost and 
complexity (bandwidth and latency) of data transmission.

On the other hand, in recent decades, we have seen a lot of development in Machine Learning 
models trained with vast amounts of data in very powerful and power-hungry mainframes. 
And what is happening today is that due to those developments, it is now possible to take noisy 
signals like images, audio, or accelerometers and extract meaning from them by using Machine 
Learning algorithms such as Neural Networks.

And what is more important is that we can run these algorithms on microcontrollers and 
sensors themselves using very little power, interpreting much more of those sensor data that we 
are currently ignoring. This is TinyML, a new technology that enables machine intelligence right 
next to the physical world.

https://www.seeedstudio.com/Seeed-XIAO-BLE-Sense-nRF52840-p-5253.html
https://www.hackster.io/EdgeImpulse/products/edge-impulse-studio?ref=project-958fd2
https://www.hackster.io/arduino/products/arduino-ide?ref=project-958fd2


179Chapter 4: project practice advanced - tinyml applications

TinyML can have many exciting applications for the benefit of society at large.

This section will explore TinyML, running on a robust and tiny device, the Seed XIAO nRF52840 
Sense (also called XIAO BLE Sense).

4.2.3 XIAO nRF52840 Sense

MainFeatures

• Bluetooth 5.0 with onboard antenna

• CPU: Nordic nRF52840, ARM® Cortex®-M4 32-bit processor with FPU, 64 MHz

• Ultra-Low Power: Standby power consumption is less than 5μA

• Battery charging chip: Supports lithium battery charge and discharge management

• 2 MB flash

• 256 KB RAM

• PDM microphone

• 6-axis LSM6DS3TR-C IMU

• Ultra Small Size: 20 x 17.5mm, XIAO series 
classic form-factor for wearable devices

• Rich interfaces: 1xUART, 1xI2C, 1xSPI, 1xNFC, 
1xSWD, 11xGPIO(PWM), 6xADC

• S i n g l e - s i d e d  c o m p o n e n t s ,  s u r f a c e 
mounting design

Connecting the XIAO nRF52840 Sense with Arduino IDE
The simple way to test and use this device is using the Arduino IDE. Once you have the IDE 
installed on your machine, navigate to File > Preferences, and f ill in “Additional Boards 
Manager URLs” with the URL below: https://files.seeedstudio.com/arduino/package_
seeeduino_boards_index.json

https://www.seeedstudio.com/Seeed-XIAO-BLE-Sense-nRF52840-p-5253.html
https://www.seeedstudio.com/Seeed-XIAO-BLE-Sense-nRF52840-p-5253.html
https://www.arduino.cc/en/software


180 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Now, navigate to Tools→Board→Board Manager in the top menu, and type in the filter keyword 
seeed nrf52 in the search box.

You will see two installation packages: Seeed nRF52 Boards and Seeed nRF52 mbed-enabled 
Boards, the differences between these two packages are as follows:

• Seeed nRF52 Boards: Friendly for Bluetooth and low-power compatibility, suitable for 
Bluetooth and low power applications.

• Seeed nRF52 mbed-enabled Boards: Friendly for TinyML support, suitable for making 
TinyML or Bluetooth-related projects, but not suitable for applications with high low-power 
requirements.

Because we will develop a TinyML project, we chose the latest version of the Seeed nRF52 mbed-
enabled Boards package. Install it and wait until you see a successful installation prompt in the 
output window.

Now, you can access this device from your Arduino IDE by selecting the development board and 
serial port, as shown in the figure below.



181Chapter 4: project practice advanced - tinyml applications

Your development board is now ready to run code on it. Let’s start with Blink - lighting up the 
LED. Note that the board does not have a regular LED like most Arduino boards. Instead, you will 
find an RGB LED that can be activated with “reverse logic” (you should apply LOW to activate 
each of the three separate LEDs). Test your RGB LED with the following code:

void setup() {

  // initialize serial.
  Serial.begin(115200);
  while (!Serial);
  Serial.println(“Serial Started”);
  
  // Pins for the built-in RGB LEDs on the Arduino Nano 33 BLE Sense
  pinMode(LEDR, OUTPUT);
  pinMode(LEDG, OUTPUT);
  pinMode(LEDB, OUTPUT);

  // Note: The RGB LEDs are ON when the pin is LOW and off when HIGH.
  digitalWrite(LEDR, HIGH);
  digitalWrite(LEDG, HIGH);
  digitalWrite(LEDB, HIGH);
  
}

void loop() {
  digitalWrite(LEDR, LOW); 
  Serial.println(“LED RED ON”);
  delay(1000);              
  digitalWrite(LEDR, HIGH);    
  Serial.println(“LED RED OFF”);
  delay(1000);     

  digitalWrite(LEDG, LOW); 
  Serial.println(“LED GREEN ON”); 
  delay(1000);              
  digitalWrite(LEDG, HIGH);  
  Serial.println(“LED GREEN OFF”);  
  delay(1000);  

  digitalWrite(LEDB, LOW); 
  Serial.println(“LED BLUE ON”);  
  delay(1000);     
  digitalWrite(LEDB, HIGH);   
  Serial.println(“LED BLUE OFF”);   
  delay(1000);  
}

Get this code online https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/tree/main/Seeed_Xiao_
Sense_bilnk_RGB

Here is the result:

https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/tree/main/Seeed_Xiao_Sense_bilnk_RGB
https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/tree/main/Seeed_Xiao_Sense_bilnk_RGB


182 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Testing the Microphone
The XIAO nRF52840 Sense has a PDM digital output MEMS microphone. Run the below code for 
testing it:

#include <PDM.h>

// buffer to read samples into, each sample is 16-bits
short sampleBuffer[256];

// number of samples read
volatile int samplesRead;

void setup() {
    Serial.begin(9600);
    while (!Serial);

    // configure the data receive callback
    PDM.onReceive(onPDMdata);

    // optionally set the gain, defaults to 20
    // PDM.setGain(30);

    // initialize PDM with:
    // - one channel (mono mode)
    // - a 16 kHz sample rate
    if (!PDM.begin(1, 16000)) {
        Serial.println(“Failed to start PDM!”);
        while (1);
    }
}

void loop() {
    // wait for samples to be read
    if (samplesRead) {

        // print samples to the serial monitor or plotter
        for (int i = 0; i < samplesRead; i++) {
            Serial.println(sampleBuffer[i]);
            // check if the sound value is higher than 500
            if (sampleBuffer[i]>=500){
                digitalWrite(LEDR,LOW);
                digitalWrite(LEDG,HIGH);
                digitalWrite(LEDB,HIGH);
            }
            // check if the sound value is higher than 250 and lower than 500
            if (sampleBuffer[i]>=250 && sampleBuffer[i] < 500){
                digitalWrite(LEDB,LOW);
                digitalWrite(LEDR,HIGH);
                digitalWrite(LEDG,HIGH);
            }
            //check if the sound value is higher than 0 and lower than 250
            if (sampleBuffer[i]>=0 && sampleBuffer[i] < 250){
                digitalWrite(LEDG,LOW);
                digitalWrite(LEDR,HIGH);
                digitalWrite(LEDB,HIGH);
            }

https://files.seeedstudio.com/wiki/XIAO-BLE/mic-MSM261D3526H1CPM-ENG.pdf


183Chapter 4: project practice advanced - tinyml applications

        }

        // clear the read count
        samplesRead = 0;
    }
}

void onPDMdata() {
    // query the number of bytes available
    int bytesAvailable = PDM.available();

    // read into the sample buffer
    PDM.read(sampleBuffer, bytesAvailable);

    // 16-bit, 2 bytes per sample
    samplesRead = bytesAvailable / 2;
}

The above code will continuously capture data to its buffer, displaying it in the Serial Monitor 
and Plotter:

Also, note that the RGB LED will be set up depending on the intensity of sound.

The Micrphone will not be used on this project in particular, but it is good to have it tested if 
it is your first time using the XIAO nRF52840 Sense.

Testing the IMU
Our tiny device also has integrated a 6-Axis IMU, the LSM6DS3TR-C, a system-in-package 3D 
digital accelerometer, and a 3D digital gyroscope. For testing, you should first install its library 
‘Seeed Arduino LSM6DS3’.

Before programming the accelerometer with the Arduino IDE, you must add the necessary 
library for the sensor. Enter the library address https://github.com/Seeed-Studio/Seeed_Arduino_
LSM6DS3/ in the browser address bar, go to the GitHub page, click Code→Download ZIP to 
download the resource pack Seeed_Arduino_LSM6DS3-master.zip to the local area, as shown 
below.

https://files.seeedstudio.com/wiki/XIAO-BLE/ST_LSM6DS3TR_Datasheet.pdf
https://github.com/Seeed-Studio/Seeed_Arduino_LSM6DS3/
https://github.com/Seeed-Studio/Seeed_Arduino_LSM6DS3/
https://github.com/Seeed-Studio/Seeed_Arduino_LSM6DS3/


184 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Add the resource pack Seeed_Arduino_LSM6DS3-master.zip downloaded in the previous step 
in the menu bar’s Sketch→Include Library→Add .ZIP Library until you see a prompt that 
the library has been loaded successfully.

Run the test code based on Harvard University’s tinymlx - Sensor Test

Now, run the following test code based on Harvard University’s tinymlx - Sensor Test.

#include “LSM6DS3.h”
#include “Wire.h”

//Create an instance of class LSM6DS3
LSM6DS3 xIMU(I2C_MODE, 0x6A);    //I2C device address 0x6A

char c;
int sign = 0;

void setup() {
  Serial.begin(115200);
  while (!Serial);

  // configure the IMU
  if (xIMU.begin() != 0) {
      Serial.println(“Device error”);
  } else {
      Serial.println(“Device OK!”);
  }

  Serial.println(“Welcome to the IMU test for the built-in IMU on the XIAO BLE 
Sense\n”);
  Serial.println(“Available commands:”);
  Serial.println(“a - display accelerometer readings in g’s in x, y, and z direc-
tions”);
  Serial.println(“g - display gyroscope readings in deg/s in x, y, and z direc-
tions”);
  Serial.println(“t - display temperature readings in oC and oF”);
}



185Chapter 4: project practice advanced - tinyml applications

void loop() {
  // Read incoming commands from serial monitor
  
  if (Serial.available()) {
    c = Serial.read();
    Serial.println(c);
  }

  if(c == ‘a’)sign=1;
  else if(c == ‘g’)sign=2;
  else if(c == ‘t’)sign=3;
  
  float x, y, z;
  if (sign ==1) { // testing accelerometer
      //Accelerometer
      x = xIMU.readFloatAccelX();
      y = xIMU.readFloatAccelY();
      z = xIMU.readFloatAccelZ();      
      Serial.print(“\nAccelerometer:\n”);
      Serial.print(“Ax:”);
      Serial.print(x);
      Serial.print(‘ ‘);
      Serial.print(“Ay:”);
      Serial.print(y);
      Serial.print(‘ ‘);
      Serial.print(“Az:”);
      Serial.println(z);
    }
  else if (sign ==2) { // testing gyroscope
      //Gyroscope
      Serial.print(“\nGyroscope:\n”);
      x = xIMU.readFloatGyroX();
      y = xIMU.readFloatGyroY();
      z = xIMU.readFloatGyroZ();      
      Serial.print(“wx:”);
      Serial.print(x);
      Serial.print(‘ ‘);
      Serial.print(“wy:”);
      Serial.print(y);
      Serial.print(‘ ‘);
      Serial.print(“wz:”);
      Serial.println(z);
    }
  else if (sign ==3) { // testing thermometer
       //Thermometer
      Serial.print(“\nThermometer:\n”);
      Serial.print(“ Degrees oC = “);
      Serial.println(xIMU.readTempC(), 0);
      Serial.print(“ Degrees oF = “);
      Serial.println(xIMU.readTempF(), 0);
      delay(1000);
    }
}

Get this code online https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/xiao_test_
IMU/xiao_test_IMU.ino

https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/xiao_test_IMU/xiao_test_IMU.ino
https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/xiao_test_IMU/xiao_test_IMU.ino


186 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Once you run the above sketch, open the Serial Monitor:

Choose one of the three options to test:

• a: Accelerometer (see the result on Plotter)

• g: Gyroscope (see the result on Plotter)

• t: Temperature (see the result on Serial Monitor)

The following images show the result:



187Chapter 4: project practice advanced - tinyml applications

4.2.4 The TinyML Motion Classification Model
For our project, we will simulate mechanical stresses in transport. Our problem will be to classify 
four classes of movement:

• Maritime (pallets in boats)

• Terrestrial (palettes in a Truck or Train)

• Lift (Palettes being handled by Fork-Lift)

• Idle (Palettes in Storage houses)

So, to start, we should collect data. Then, accelerometers will provide the data on the palette (or 
container).



188 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

From the above images, we can see that primarily horizontal movements should be associated 
with “Terrestrial class,” Vertical movements to “Lift Class,” no activity to “Idle class,” and movent 
on all three axes to Maritime class.

Connecting a Device to the Edge Impulse Studio
For data collection, we can have several options. In a real case, we can have our device, for 
example, connected directly to one container, and the data collected on a file (for example .CSV) 
and stored on an SD card (via SPI connection) or an offline repo in your computer. Data can also 
be sent remotely to a nearby repository, such as a mobile phone, using Bluetooth as done in this 
project: Sensor DataLogger. Once your dataset is collected and stored as a .CSV file, it can be 
uploaded to the Studio using the CSV Wizard tool.

In this video, you can learn alternative ways to send data to the Edge Impulse Studio.

In this project, we should first connect our device to the Edge Impulse Studio for data collection, 
which will also be used for data pre-processing, model training, testing, and deployment.

Follow the instructions here to install the 
Node.js and Edge Impulse CLI on your 
computer.

Once the XIAO nRF52840 Sense is not a 
fully supported development board by Edge 
Impulse, we should use the CLI Data Forwarder 
to capture data from the accelerometer and 
send it to the Studio, as shown in this diagram:

Your device should be connected to the 
computer serial and running a code to capture 
IMU (Accelerometer) data and “print them” on 
the serial. Further, the Edge Impulse Studio 
will “capture” them. Run the code below:

#include “LSM6DS3.h”
#include “Wire.h”

//Create an instance of class LSM6DS3
LSM6DS3 xIMU(I2C_MODE, 0x6A);    //I2C device address 0x6A

#define CONVERT_G_TO_MS2    9.80665f

https://www.containerhandbuch.de/chb_e/stra/?/chb_e/stra/stra_02_03_03.htm
https://www.hackster.io/mjrobot/sensor-datalogger-50e44d
https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/csv-wizard
https://youtu.be/2KBPq_826WM
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-installation
https://nodejs.org/en/
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder


189Chapter 4: project practice advanced - tinyml applications

#define FREQUENCY_HZ        50
#define INTERVAL_MS         (1000 / (FREQUENCY_HZ + 1))

static unsigned long last_interval_ms = 0;

void setup() {
    Serial.begin(115200);
    while (!Serial);

    // configure the IMU
    if (xIMU.begin() != 0) {
        Serial.println(“Device error”);
    } else {
        Serial.println(“Device OK!”);
    }

    Serial.println(“Data Forwarder - Built-in IMU (Accelerometer) on the XIAO BLE 
Sense\n”);
}

void loop() {
    float x, y, z;

    if (millis() > last_interval_ms + INTERVAL_MS) {
        last_interval_ms = millis();

        x = xIMU.readFloatAccelX();
        y = xIMU.readFloatAccelY();
        z = xIMU.readFloatAccelZ();

        Serial.print(x * CONVERT_G_TO_MS2);
        Serial.print(‘\t’);
        Serial.print(y * CONVERT_G_TO_MS2);
        Serial.print(‘\t’);
        Serial.println(z * CONVERT_G_TO_MS2);
    }
}

Get this code online https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO_BLE_
Sense_Accelerometer_Data_Forewarder/XIAO_BLE_Sense_Accelerometer_Data_Forewarder.ino

Go to the Edge Impulse page and create a project. Next, start the CLI Data Forwarder on your 
terminal, entering (if it is the first time) the following command:

$ edge-impulse-data-forwarder --clean

Next, enter your EI credentials, and choose your project, variable, and device names:

https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO_BLE_Sense_Accelerometer_Data_Foreward
https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO_BLE_Sense_Accelerometer_Data_Foreward
https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-data-forwarder


190 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

The Studio can read the sampled frequency as 51Hz instead of the 50Hz previously defined 
in the code. It is OK.

Go to the Devices section on your EI Project and verify if the device is connected (the dot should 
be green):

Data Collection
As discussed before, we should capture data from all four Transportation Classes:

• lift (up-down)

• terrestrial (left-right)

• maritime (zig-zag, etc.)

• idle

Below is one sample (10 seconds of raw data):

You can capture, for example, around 2 minutes (twelve samples of 10 seconds) for each of 
the four classes (a total of 8 minutes of data). Using the three dots menu after each one of 
the samples, select 2 of them, reserving them for the Test set. Alternatively, you can use the 
automatic Train/Test Split tool on the Danger Zone of Dashboard tab.



191Chapter 4: project practice advanced - tinyml applications

Once you have captured your dataset, you can explore it in more detail using the Data 
Explorer, a visual tool to f ind outliers or mislabeled data (helping to correct them). The 
data explorer first tries to extract meaningful features from your data (by applying signal 
processing and neural network embeddings) and then uses a dimensionality reduction 
algorithm such as PCA or t-SNE to map these features to a 2D space. This gives you a one-
look overview of your complete dataset.

Data Pre-Processing
Data pre-processing is extracting features from the dataset captured with the accelerometer, 
which involves processing and analyzing the raw data. Accelerometers measure the 
acceleration of an object along one or more axes (typically three, denoted as X, Y, and Z). These 
measurements can be used to understand various aspects of the object’s motion, such as 
movement patterns and vibrations.

Raw accelerometer data can be noisy and contain errors or irrelevant information. Preprocessing 
steps, such as filtering and normalization, can clean and standardize the data, making it more 
suitable for feature extraction. In our case, we should divide the data into smaller segments or 
windows. This can help focus on specific events or activities within the dataset, making feature 
extraction more manageable and meaningful. The window size and overlap (window increase) 
choice depend on the application and the frequency of the events of interest. As a thumb rule, 
we should try to capture a couple of “cycles of data”.

With a sampling rate (SR) of 50Hz and a window size of 2 seconds, we will get 100 samples 
per axis, or 300 in total (3 axis x 2 seconds x 50 samples). We will slide this window every 
200ms, creating a larger dataset where each instance has 300 raw features.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/data-explorer
https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/data-explorer
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding


192 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Once the data is preprocessed and segmented, you can extract features that describe the 
motion’s characteristics. Some typical features extracted from accelerometer data include: - 
Time-domain features describe the data’s statistical properties within each segment, such as 
mean, median, standard deviation, skewness, kurtosis, and zero-crossing rate. - Frequency-
domain features are obtained by transforming the data into the frequency domain using 
techniques like the Fast Fourier Transform (FFT). Some typical frequency-domain features 
include the power spectrum, spectral energy, dominant frequencies (amplitude and frequency), 
and spectral entropy. - Time-frequency domain features combine the time and frequency 
domain information, such as the Short-Time Fourier Transform (STFT) or the Discrete Wavelet 
Transform (DWT). They can provide a more detailed understanding of how the signal’s frequency 
content changes over time.

In many cases, the number of extracted features can be large, which may lead to overfitting or 
increased computational complexity. Feature selection techniques, such as mutual information, 
correlation-based methods, or principal component analysis (PCA), can help identify the most 
relevant features for a given application and reduce the dimensionality of the dataset. The 
Studio can help with such feature importance calculations.

EI Studio Spectral Features

Data preprocessing is a challenging area for embedded machine learning. Still, Edge Impulse 
helps overcome this with its digital signal processing (DSP) preprocessing step and, more 
specifically, the Spectral Features Block.

On the Studio, the collected raw dataset will be the input of a Spectral Analysis block, which 
is excellent for analyzing repetitive motion, such as data from accelerometers. This block will 
perform a DSP (Digital Signal Processing), extracting features such as FFT or Wavelets.

For our project, once the time signal is continuous, we should use FFT with, for example, a 
length of [32].

The per axis/channel Time Domain Statistical features are:

• RMS: 1 feature

• Skewness: 1 feature

• Kurtosis: 1 feature

The per axis/channel Frequency Domain Spectral features are:

• Spectral Power: 16 features (FFT Length/2)

• Skewness: 1 feature

• Kurtosis: 1 feature

So, for an FFT length of 32 points, the resulting output of the Spectral Analysis Block will be 21 
features per axis (a total of 63 features).

You can learn more about how each feature is calculated by downloading the notebook 
Edge Impulse - Spectral Features Block Analysis TinyML under the hood: Spectral Analysis 
or opening it directly on Google CoLab.

Those 63 features will be the Input Tensor of a Neural Network Classifier.

Model Design
Our classifier will be a Dense Neural Network (DNN) that will have 63 neurons on its input layer, 
two hidden layers with 20 and 10 neurons, and an output layer with four neurons (one per each 
class), as shown here:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/processing-blocks/spectral-features
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Digital_signal_processing#Wavelet
https://en.wikipedia.org/wiki/Root_mean_square
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSkewness
https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKurtosis
https://en.wikipedia.org/wiki/Spectral_density
https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb
https://www.hackster.io/mjrobot/tinyml-under-the-hood-spectral-analysis-94676c
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/Motion_Classification/Edge_Impulse_Spectral_Features_Block.ipynb


193Chapter 4: project practice advanced - tinyml applications

Impulse Design
A complete Impulse comprises three primary building blocks: the input block - which obtains 
the raw data, the processing block - which extracts features, and the learning block - which 
classifies the data. The following image shows the interface when the three building blocks still 
need to be added, and our machine-learning pipeline will be implemented by adding these 
three blocks.

Impulse obtains raw data through the input block, uses the processing block to extract features, 
and then uses the learning block to classify new data. In our continuous action recognition, the 
added blocks include:

1. Adding the input block: Time Series Data

Click the “Add an Input Block” button and select Time Series Data in the pop-up window as 
shown below to match the sensor data type we collected.

As shown in the f igure below, set the Window Size to 2000 ms (2 seconds), the Window 
Increase to 80 milliseconds, and the Frequency to 51 Hz based on the calculations we made in 
the data preprocessing section on the Time Series Data block that appears.



194 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

The effect after adding the processing block is shown in the figure below.

2. Adding the processing block: Spectral Analysis

Click the “Add a Processing Block” button and select Spectral Analysis in the pop-up window 
as shown below to match our motion analysis task type.



195Chapter 4: project practice advanced - tinyml applications

3. Adding the learning block: Classification

Click the “Add Learning Block” button and select Classification in the pop-up window as shown 
below to match our motion analysis task type.

The interface of Impulse design after addition is shown in the f igure below, and now the 
machine learning pipeline has been built.

In addition, we can also use a second model - K-means, which can be used for anomaly 
detection. If we imagine that we can treat our known classes as clusters, then any sample that 
does not fit into it might be an anomaly (for example, a container falling into the sea when the 
ship is at sea).



196 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

For this, we can use the same input tensor entering the NN classifier as the input to the K-means 
model:

Click the “Add Learning Block” button again and select Anomaly Detection (K-means) in the 
pop-up window below.



197Chapter 4: project practice advanced - tinyml applications

The final Impulse design is as shown in the figure below, click the Save Impulse button on the 
far right.

Generating features
At this point in our project, we have def ined the pre-processing method and the model 
designed. Now, it is time to have the job done. First, let’s take the raw data (time-series type) and 
convert it to tabular data. Go to the Spectral Features tab, select Save Parameters, and at the 
top menu, select Generate Features option and Generate Features button:



198 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Each 2-second window data will be converted into one data point of 63 features. The Feature 
Explorer will show those data in 2D using UMAP.

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction 
technique that can be used for visualisation similarly to t-SNE, but also for general non-
linear dimension reduction.

With the visualization, it is possible to verify that the classes present an excellent separation, 
which indicates that the classifier should work well.

Optionally you can analyze how important each one of the features is for one class 
compared with other classes.

Training
Our model has four layers, as shown below:

As hyperparameters, we will use a Learning Rate of 0.005 and 20% of data for validation for 30 
epochs.

https://umap-learn.readthedocs.io/en/latest/


199Chapter 4: project practice advanced - tinyml applications

After training, we can see that the accuracy is 100%.



200 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

If a K-means block for anomaly detection has been added during model design, an additional 
section for Anomaly Detection will appear under the Impulse Design column on the left, 
as shown in the image below. Once inside the Anomaly Detection section, click [Select 
Suggested Axes], and the system will automatically make selections based on previously 
calculated important features. Then click on the [Start Training] button to begin the 
training. Results will be output in the Anomaly Explorer on the right after completion.



201Chapter 4: project practice advanced - tinyml applications

At this point, we have completed the basic machine learning training process.

Testing
Using the 20% of data set aside during the data collection phase, we can verify the model’s 
performance with unknown data. As shown in the image below, click on the Model Testing 
section on the left side of the Edge Impulse interface. Next to the [Classify All] button, there 
is an icon with three dots, click on it to open the Set Confidence Thresholds popup window. 
Here, you can set confidence thresholds for the results of the two learning blocks. We should 
define an acceptable threshold for results considered as anomalies. If a result is not 100% (which 
is often the case) but is within the threshold range, it is still usable.



202 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Press the Classify All button to start the model testing. The model test results will be 
displayed upon completion, as shown in the image below.

Live Classification
Once the model is obtained, you should use the opportunity to test the Live Classification when 
your device is still connected to the Edge Impulse Studio. As shown in the image below, click on 
the Live Classification section on the left side of the Edge Impulse interface, then click the 
[Start Sampling] button.

At this time, you can, for example, shake the XIAO, the process is the same as the sampling; 
wait a few seconds, and the classification results will be given. As shown in the image below, I 
shook the XIAO vigorously, and the model unhesitatingly inferred that the entire process was 
anomalous.



203Chapter 4: project practice advanced - tinyml applications

Try now with the same movements 
used during data capture. The 
result should match the class used 
for training.

- Attention -

 Here, you will capture real data with your device and upload it to the Edge Impulse Studio, 
where the trained model will be used for inference (though the model is not in your device).

Deployment
Now it is time for magic˜! The Studio will package all the needed libraries, preprocessing 
functions, and trained models, downloading them to your computer. You should select the 
option Arduino Library and at the bottom, select Quantized (Int8) and Build.



204 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

A Zip file will be created and downloaded to your computer.

On your Arduino IDE, go to Sketch tab and select the option Add .ZIP Library.

and Choose the.zip file downloaded by the Studio:



205Chapter 4: project practice advanced - tinyml applications

Inference
Now, it is time for a real test .  We will  make 
inferences wholly disconnected from the Studio. 
Let’s change one of the code examples created 
when you deploy the Arduino Library.

In your Arduino IDE, go to File/Examples tab and 
look for your project, and on examples, select nano_
ble_sense_accelerometer:

Of course, the Arduino Nano BLE 33 differs from 
your board, the XIAO, but we can have the code 
working with only a few changes. For example, at 
the beginning of the code, you have the library 
related to Arduino Sense IMU:

/* Includes -------------------------------------------------------------- */
#include <XIAO_BLE_Sense_-_Motion_Classification_inferencing.h>
#include <Arduino_LSM9DS1.h>

Change the “includes” portion with the code related to the XIAO nRF52840 Sense IMU:

/* Includes -------------------------------------------------------------- */
#include <XIAO_BLE_Sense_-_Motion_Classification_inferencing.h>
#include “LSM6DS3.h”
#include “Wire.h”

//Create an instance of class LSM6DS3
LSM6DS3 xIMU(I2C_MODE, 0x6A);    //I2C device address 0x6A

On the setup function, initiate the IMU using the name that you stated before:

if (xIMU.begin() != 0) {
    ei_printf(“Failed to initialize IMU!\r\n”);
}
else {
    ei_printf(“IMU initialized\r\n”);
}

At the loop function, the buffers: buffer[ix], buffer[ix + 1] and buffer[ix + 2] will receive 
the 3 axis data captured by the accelerometer. On the original code, you have the line:

IMU.readAcceleration(buffer[ix], buffer[ix + 1], buffer[ix + 2]);

Change it with this block of code:

buffer[ix]     = xIMU.readFloatAccelX();
buffer[ix + 1] = xIMU.readFloatAccelY();
buffer[ix + 2] = xIMU.readFloatAccelZ();

Get this code online https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO_BLE_
Sense_accelerometer/XIAO_BLE_Sense_accelerometer.ino

And that is it! You can now upload the code to your device and proceed with the inferences.

https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO_BLE_Sense_accelerometer/XIAO_BLE_Sens
https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense/blob/main/XIAO_BLE_Sense_accelerometer/XIAO_BLE_Sens


206 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

You can see the result of the inference of each class on the images:



207Chapter 4: project practice advanced - tinyml applications

Post-processing

Now that we know the model is working since it detects the movements, we suggest that you 
modify the code to see the result with the XIAO completely offline (disconnected from the PC 
and powered by a battery, a power bank, or an independent 5V power supply).

The idea is that if one specific movement is detected, a particular LED could be lit. For example, 
if terrestrial is detected, the Green LED will light; if maritime, the Red LED will light, if it is a lift, 
the Blue LED will light; and if no movement is detected (idle), the LEDs will be OFF. You can also 
add a condition when an anomaly is detected, in this case, for example, a white color can be 
used (all e LEDs light simultaneously).

Conclusion
The Seeed Studio XIAO nRF52840 Sense is a giant tiny device! It is powerful, trustworthy, not 
expensive, low power, and has suitable sensors to be used on the most common embedded 
machine learning applications. Even though Edge Impulse does not off icially support XIAO 
nRF52840 Sense, we also realized that it could be easily connected with the Studio.

On the GitHub repository, you will find the last version of the codes: Seeed-XIAO-BLE-Sense.

The applications for motion classification and anomaly detection are extensive, and the XIAO is 
well-suited for scenarios where low power consumption and edge processing are advantageous. 
Its small form factor and efficiency in processing make it an ideal choice for deploying portable 
and remote applications where real-time processing is crucial and connectivity may be limited.

Case Applications
Before we finish, consider that Movement Classification and Object Detection can be utilized in 
many applications across various domains. Here are some of the potential applications:

Industrial and Manufacturing

• Predictive Maintenance: Detecting anomalies in machinery motion to predict failures 
before they occur.

• Quality Control: Monitoring the motion of assembly lines or robotic arms for precision 
assessment and deviation detection from the standard motion pattern.

• Warehouse Logistics: Managing and tracking the movement of goods with automated 
systems that classify different types of motion and detect anomalies in handling.

https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense


208 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Healthcare

• Patient Monitoring: Detecting falls or abnormal movements in the elderly or those with 
mobility issues.

• Rehabilitation: Monitoring the progress of patients recovering from injuries by classifying 
motion patterns during physical therapy sessions.

• Activity Recognition: Classifying types of physical activity for fitness applications or patient 
monitoring.

Consumer Electronics

• Gesture Control: Interpreting specific motions to control devices, such as turning on lights 
with a hand wave.

• Gaming: Enhancing gaming experiences with motion-controlled inputs.

Transportation and Logistics

• Vehicle Telematics: Monitoring vehicle motion for unusual behavior such as hard braking, 
sharp turns, or accidents.

• Cargo Monitoring: Ensuring the integrity of goods during transport by detecting unusual 
movements that could indicate tampering or mishandling.

Smart Cities and Infrastructure

• Structural Health Monitoring: Detecting vibrations or movements within structures that 
could indicate potential failures or maintenance needs.

• Traff ic Management: Analyzing the flow of pedestrians or vehicles to improve urban 
mobility and safety.

Security and Surveillance

• Intruder Detection: Detecting motion patterns typical of unauthorized access or other 
security breaches.

• Wildlife Monitoring: Detecting poachers or abnormal animal movements in protected areas.

Agriculture

• Equipment Monitoring: Tracking the performance and usage of agricultural machinery.

• Animal Behavior Analysis: Monitoring livestock movements to detect behaviors indicating 
health issues or stress.

Environmental Monitoring

• Seismic Activity: Detecting irregular motion patterns that precede earthquakes or other 
geologically relevant events.

• Oceanography: Studying wave patterns or marine movements for research and safety 
purposes.



209Chapter 4: project practice advanced - tinyml applications

4.3 
Sound Classification (KWS)

In this section, we continue our exploration 
of Machine Learning on Seeed Studio XIAO 
nRF52840 Sense (also called XIAO BLE Sense), 
now classifying sound waves.

4.3.1 Things used in this 
project

Hardware components

• Seeed Studio XIAO nRF52840 Sense × 1

• Seeed Studio Seeeduino XIAO Expansion 
board × 1

4.3.2 Introduction
In the last section, Anomaly Detection & Motion Classification, we explored Embedded Machine 
Learning, or simply TinyML, running on the Seeed XIAO nRF52840 Sense. Besides installing and 
testing the device, we explored motion classification using actual data signals from its onboard 
accelerometer. This new project will use the same XIAO nRF52840 Sense to classify sound, 
explicitly working as “Key Word Spotting” (KWS). A KWS is a typical TinyML application and an 
essential part of a voice assistant.

But how does a voice assistant work?

To start, it is essential to realize that Voice Assistants on the market, like Google Home or 
Amazon Echo-Dot, only react to humans when they are “waked up” by particular keywords such 
as ” Hey Google” on the first one and “Alexa” on the second.

Software apps and online services

• Edge Impulse Studio• Arduino IDE

https://www.seeedstudio.com/Seeed-XIAO-BLE-Sense-nRF52840-p-5253.html
https://www.hackster.io/seeed/products/seeeduino-xiao-expansion-board?ref=project-2fb3ab
https://www.hackster.io/seeed/products/seeeduino-xiao-expansion-board?ref=project-2fb3ab
https://www.seeedstudio.com/Seeed-XIAO-BLE-Sense-nRF52840-p-5253.html
https://www.hackster.io/EdgeImpulse/products/edge-impulse-studio?ref=project-958fd2
https://www.hackster.io/arduino/products/arduino-ide?ref=project-958fd2


210 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

In other words, recognizing voice commands 
is based on a multi-stage model or Cascade 
Detection.

Stage 1: A smaller microprocessor inside the 
Echo Dot or Google Home continuously listens 
to the sound, waiting for the keyword to be 
spotted. For such detection, a TinyML model at 
the edge is used (KWS application).

Stage 2: Only when triggered by the KWS 
application on Stage 1 is the data sent to the 
cloud and processed on a larger model.

The video below shows an example of a Google 
Assistant being programmed on a Raspberry 
Pi (Stage 2), with an Arduino Nano 33 BLE as 
the tinyML device (Stage 1): https://youtu.be/e_
OPgcnsyvM

To explore the above Google Assistant 
project, please see the tutorial: Building an 
Intelligent Voice Assistant From Scratch.

4.3.3 The KWS Project

Our KWS application will recognize three classes of sound:

• Keyword 1: UNIFEI

• Keyword 2: IESTI

• “SILENCE” (no keywords spoken, only background noise is present)

Optionally, for real-world projects, it is advised to include different words than keywords 1 
and 2 in the class “Silence” (or Background) or even create an extra class with such words (for 
example a class “others”).

https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3
https://www.hackster.io/mjrobot/building-an-intelligent-voice-assistant-from-scratch-2199c3


211Chapter 4: project practice advanced - tinyml applications

The Machine Learning Workflow
The main component of the KWS application is its model. So, we must train such a model with 
our specific keywords:

Dataset
The critical component of Machine Learning Workflow is the dataset. Once we have decided on 
specific keywords (UNIFEI and IESTI), all datasets should be created from zero. When working 
with accelerometers, creating a dataset with data captured by the same type of sensor was 
essential. In the case of sound, it is different because of what we will classify as audio data.

The critical difference between sound and audio is the type of energy. Sound is mechanical 
perturbation (longitudinal sound waves) that propagate through a medium, causing 
variations of pressure in it. Audio is an electrical (analog or digital) signal representing 
sound.

The sound waves should be converted to audio data when we speak a keyword. The conversion 
should be done by sampling the signal generated by the microphone in 16KHz with a 16-bit depth.

So, any device that can generate audio data with this basic specification (16Khz/16bits) will work 
fine. As a device, we can use the proper XIAO nRF52840 Sense, a computer, or even your mobile 
phone.

Capturing online Audio Data with Edge Impulse and a smartphone
In the TinyML Made Easy: Anomaly Detection & Motion Classification section, we learned how to 
install and test our device using the Arduino IDE and connect it to Edge Impulse Studio for data 
capturing. For that, we use the EI CLI function Data Forwarder, but according to Jan Jongboom, 
Edge Impulse CTO, audio goes too fast for the data forwarder to be captured. If you have PCM 
data already, then turning it into a WAV file and uploading it with the uploader is the easiest. 
With accelerometers, our sample frequency was around 50Hz, with audio being 16KHz.



212 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

So, we can not connect the XIAO directly to the Studio. But we can capture sound using any 
smartphone connected to the Studio online.

We will not explore this option here, but you can easily follow the EI documentation and 
tutorial.

Capturing Audio Data with the XIAO 
nRF52840 Sense
The easiest way to capture audio and save it locally as a 
.wav file is using an expansion board for the XIAO family 
of devices, the Seeed Studio XIAO Expansion board.

This expansion board enables the building of prototypes and projects easily and quickly, using 
its rich peripherals such as OLED Display, SD Card interface, RTC, passive buzzer, RESET/User 
button, 5V servo connector, and multiple data interfaces.

This project will focus on classifying keywords, and the MicroSD card available on the device will 
be very important in helping us with data capture.

Saving recorded audio from the microphone on an SD card

Connect the XIAO nRF52840 Sense on the Expansion Board and insert an SD card into the SD 
card slot at the back. > The SD Card should be pre-formated as FAT or exFAT.

Next, download the Seeed_Arduino_FS Library as 
a zip file:

https://docs.edgeimpulse.com/docs/development-platforms/using-your-mobile-phone
https://docs.edgeimpulse.com/docs/tutorials/responding-to-your-voice
https://wiki.seeedstudio.com/Seeeduino-XIAO-Expansion-Board/
https://github.com/Seeed-Studio/Seeed_Arduino_Mic


213Chapter 4: project practice advanced - tinyml applications

And install the downloaded library: Seeed_Arduino_Mic-master.zip on your Arduino IDE: 
Sketch -> Include Library -> Add .ZIP Library...

Next, navigate to File > Examples > Seeed Arduino Mic > mic_Saved_OnSDcard to open 
the sketch: mic_Saved_OnSDcard.

Each time you press the reset button, a 5 seconds audio sample is recorded and saved on the 
SD card. I changed the original file to add LEDs to help during the recording process as below:

• During the time that LED Red is ON is possible to record ==> RECORD

• During the file writing process, LED Red is OFF ==> WAIT

• When finished writing, LED Green is ON ==> Press Reset Button once and wait for LED Red 
ON again, and proceed with a new sample recording

I realized that sometimes at the beginning and the end of each sample, a “spike” was recorded, 
so I cut the initial 300ms from each 5s sample. The spike verified at the end always happened 
after the recording process and should be eliminated on Edge Impulse Studio before training. 
Also, I increased the microphone gain to 30 dB.

The complete file (Xiao_mic_Saved_OnSDcard.ino) can be found on the Git Hub (3_KWS): Seeed-
XIAO-BLE-Sense.

During the recording process, the.wav file names are shown on Serial Monitor:

https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense
https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense


214 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Take the SD card from the Expansion Board and insert it into your computer:

The files are ready to be uploaded to Edge Impulse Studio

Capturing (offline) Audio Data with a smartphone or PC
Alternatively, you can use your PC or smartphone to capture audio data with a sampling 
frequency 16KHz and a bit depth of 16 Bits. A good app for that is Voice Recorder Pro (IOS). Save 
your record as .wav files and send them to your computer.

https://www.bejbej.ca/app/voicerecordpro


215Chapter 4: project practice advanced - tinyml applications

Note that any smartphone app can be used for audio recording or even your computer, for 
example using Audacity.

Training model with Edge Impulse Studio
When the raw dataset is created, you should initiate a new project at Edge Impulse Studio:

Once the project is created, go to the Data Acquisition section and select the Upload 
Existing Data tool. Choose the f iles to be uploaded, for example, I started uploading the 
samples recorded with the XIAO nRF52840 Sense:

https://www.audacityteam.org/


216 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

The samples will now appear in the Data acquisition section:

Click on three dots after the sample name and select Split sample. Once inside de tool, split 
the data into 1-second records (try to avoid start and end portions):



217Chapter 4: project practice advanced - tinyml applications

This procedure should be repeated for all samples. After that, upload other class samples (IESTI 
and SILENCE) captured with the XIAO and your PC or smartphone.

- Attention -

For longer audio files (minutes), first, split into 10-second segments and after that, use the 
tool again to get the final 1-second splits.

In the end, the dataset has around 70 1-second samples for each class:



218 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Now, you should split that dataset into Train/Test. You can do it manually (using the three dots 
menu, moving samples individually) or using Perform Train / Test Split on Dashboard - 
Danger Zone.

We can optionally check all datasets using the tab Data Explorer. The data points seem apart, 
which means that the classification model should work:

Creating Impulse (Pre-Process / Model definition)
An impulse takes raw data, uses signal processing to extract features, and then uses a learning 
block to classify new data.



219Chapter 4: project practice advanced - tinyml applications

First, we will take the data points with a 1-second window, augmenting the data, sliding that 
window each 500ms. Note that the option zero-point pad is set. It is important to fill with zeros 
samples smaller than 1 second in some cases, I reduced the 1000 ms window on the split tool to 
avoid noises and spikes.

Each 1-second audio sample should be pre-processed and converted to an image (for example, 
13 x 50 x 1). We will use Audio (MFCC), which extracts features from audio signals using Mel 
Frequency Cepstral Coefficients, which are well suited for the human voice, which is our case here.

Next, we select the Classification block to build our model from scratch using a Convolution 
Neural Network (CNN).

Pre-Processing (MFCC)
The next step is to create the images to be trained in the next phase:

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum


220 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

We will keep the default parameter values. We do not spend much memory to pre-process data 
(only 17KB), but the processing time is relatively high (177 ms for a Cortex-M4 CPU as our XIAO). 
Save parameters and generate features:



221Chapter 4: project practice advanced - tinyml applications

Going under the hood

To understand better how the raw sound is preprocessed, look at the Feature Engineering for 
Audio Classification chapter. You can play with the MFCC features generation by downloading 
this notebook from GitHub or Opening it In Colab.

Model Design and Training
We will use a simple Convolution Neural Network (CNN) model, tested with 1D and 2D 
convolutions. The basic architecture has two blocks of Convolution + MaxPooling ([8] and [16] 
filters, respectively) and a Dropout of [0.25] for the 1D and [0.5] for the 2D. For the last layer, after 
Flattening, we have [3] neurons, one for each class:

As hyper-parameters, we will have a Learning Rate of [0.005] and a model trained by [100] 
epochs. We will also include a data augmentation method based on SpecAugment. We trained 
the 1D and the 2D models with the same hyperparameters. The 1D architecture had a better 
overall result (91.1% accuracy) when compared with 88% of the 2D, so we will use the 1D.

Using 1D convolutions is more eff icient because it requires fewer parameters than 2D 
convolutions, making them more suitable for resource-constrained environments.

https://github.com/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://colab.research.google.com/github/Mjrovai/Arduino_Nicla_Vision/blob/main/KWS/KWS_MFCC_Analysis.ipynb
https://arxiv.org/abs/1904.08779


222 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

If you want to understand what is happening “under the hood,” you can download the 
pre-processed dataset (MFCC training data) from the Dashboard tab and run this Jupyter 
Notebook, playing with the code or Opening it In Colab. You should adapt the notebook for 
your data and model. For example, you can analyze the accuracy by each epoch:

Testing
Testing the model with the data put apart before training (Test Data), we got an accuracy of 75%. 
Based on the small amount of data used, it is OK, but I strongly suggest increasing the number 
of samples.



223Chapter 4: project practice advanced - tinyml applications

Collecting more data, the Test accuracy moved up around 5%, going from 75% to around 81%:

Now, we can proceed with the project, but before deployment on our device, it is possible to 
perform Live Classification using a Smart Phone, confirming that the model is working with live 
and real data:

Deploy and Inference
The Studio will package all the needed libraries, preprocessing functions, and trained models, 
downloading them to your computer. You should select the option Arduino Library and at the 
bottom, choose Quantized (Int8) and [Build].



224 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

A Zip file will be created and downloaded to your computer:

On your Arduino IDE, go to the Sketch tab and select the option Add .ZIP Library.

And Choose the.zip file downloaded by the Studio:

Now, it is time for a real test. We will make inferences wholly disconnected from the Studio. Let’s 
change one of the code examples created when you deploy the Arduino Library.

In your Arduino IDE, go to the File/Examples tab and look for your project, and on examples, 
select nano_ble33_sense_microphone_continuous:



225Chapter 4: project practice advanced - tinyml applications

Even though the XIAO is not the same as the Arduino, both have the same MPU and PDM 
microphone, so the code works as it is. Upload the sketch to XIAO and open the Serial Monitor. 
Start talking about one or another Keyword and confirm that the model is working correctly:

Postprocessing
Now that we know that the model is working by detecting our two keywords, let’s modify the 
code so we can see the result with the XIAO nRF52840 Sense completely offline (disconnected 
from the PC and powered by a battery).

The idea is that whenever the keyword UNIFEI is detected, the LED Red will be ON; if it is IESTI, 
LED Green will be ON, and if it is SILENCE (No Keyword), both LEDs will be OFF.



226 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

If you have the XIAO nRF52840 Sense installed on the Expansion Board, we can display the 
class label and its probability. Otherwise, use only the LEDs.

Let’s go by Parts: Installing and Testing the SSD Display In your Arduino IDE, Install the u8g2 
library and run the below code for testing:

#include <Arduino.h>
#include <U8x8lib.h>
#include <Wire.h>

U8X8_SSD1306_128X64_NONAME_HW_I2C u8x8(PIN_WIRE_SCL, PIN_WIRE_SDA, U8X8_PIN_NONE);   

void setup(void) {
    u8x8.begin();
    u8x8.setFlipMode(0);   // set number from 1 to 3, the screen word should rotate 
180
}

void loop(void) {
    u8x8.setFont(u8x8_font_chroma48medium8_r);
    u8x8.setCursor(0, 0);
    u8x8.print(“Hello World!”);
}

And you should see the “Hello World” displayed on the SSD: 

Now, let’s create some functions that, depending on the values of pred_index and pred_value, 
will trigger the proper LED and display the class and probability. The code below will simulate 
some inference results and present them on display and LEDs:

/* Includes ---------------------------------------------------------------- */
#include <Arduino.h>
#include <U8x8lib.h>
#include <Wire.h>

#define NUMBER_CLASSES 3

/** OLED */
U8X8_SSD1306_128X64_NONAME_HW_I2C oled(PIN_WIRE_SCL, PIN_WIRE_SDA, U8X8_PIN_NONE);  

Int pred_index = 0;     
float pred_value = 0; 
String lbl = “ “;

https://github.com/olikraus/U8g2_Arduino


227Chapter 4: project practice advanced - tinyml applications

void setup() {
    pinMode(LEDR, OUTPUT);
    pinMode(LEDG, OUTPUT);
    pinMode(LEDB, OUTPUT);

    digitalWrite(LEDR, HIGH);
    digitalWrite(LEDG, HIGH);
    digitalWrite(LEDB, HIGH);

    oled.begin();
    oled.setFlipMode(2);
    oled.setFont(u8x8_font_chroma48me-
dium8_r);
    oled.setCursor(0, 0);
    oled.print(“ XIAO Sense KWS”);
}

/**
* @brief      turn_off_leds function - 
turn-off all RGB LEDs
*/
void turn_off_leds(){
    digitalWrite(LEDR, HIGH);
    digitalWrite(LEDG, HIGH);
    digitalWrite(LEDB, HIGH);
}

/**
* @brief      Show Inference Results 
on OLED Display
*/
void display_oled(int pred_index, float 
pred_value){
    switch (pred_index){
        case 0:
            turn_off_leds();

            digitalWrite(LEDG, LOW);
            lbl = “IESTI  “ ;
            break;

        case 1:
            turn_off_leds();
            lbl = “SILENCE”;
            break;

        case 2:
            turn_off_leds();
            digitalWrite(LEDR, LOW);
            lbl = “UNIFEI “;
            break;
    }
    oled.setCursor(0, 2);
    oled.print(“      “);
    oled.setCursor(2, 4);
    oled.print(“Label:”);
    oled.print(lbl);
    oled.setCursor(2, 6);
    oled.print(“Prob.:”);
    oled.print(pred_value);
}

void loop() {
    for (int i = 0; i < NUMBER_CLASS-
ES; i++) { 
        pred_index = i;     
        pred_value = 0.8;   
        display_oled(pred_index, pred_
value);
        delay(2000);
    }
}

Running the above code, you should get the below result:



228 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

You should merge the above code (Initialization and functions) with the nano_ble33_sense_
microphone_continuous.ino you initially used to test your model. Also, you should include the 
below code on loop() between the lines:

ei_printf(“: \n”);
...
#if EI_CLASSIFIER_HAS_ANOMALY == 1

And replacing the original function to print inference results on the Serial Monitor:

int pred_index = 0;     // Initialize pred_index
float pred_value = 0;   // Initialize pred_value

for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
    ei_printf(“    %s: %.5f\n”, result.classification[ix].label, result.classifica-
tion[ix].value);
    if (result.classification[ix].value > pred_value){
        pred_index = ix;
        pred_value = result.classification[ix].value;
    }
}
display_oled(pred_index, pred_value);

Here you can see how the final project is: https://youtu.be/1ex88hSqqyI

The complete code can be found on the GitHub (3_KWS): Seeed-XIAO-BLE-Sense.

Conclusion
The Seeed XIAO nRF52840 Sense is really a giant tiny device! However, it is powerful, trustworthy, 
not expensive, low power, and has suitable sensors to be used on the most common embedded 
machine learning applications such as movement and sound.

Even though Edge Impulse does not off icially support XIAO nRF52840 Sense (yet!), we also 
realized that it could use Studio for training and deployment.

On the GitHub repository, you will f ind the last version of the codes in the 3_KWS folder: 
Seeed-XIAO-BLE-Sense

Before we finish, consider that Sound Classification is more than just voice. For example, you can 
develop TinyML projects around sound in several areas as:

• Security (Broken Glass detection)

• Industry (Anomaly Detection)

• Medical (Snore, Toss, Pulmonary diseases)

• Nature (Beehive control, insect sound)

https://youtu.be/1ex88hSqqyI
https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense
https://github.com/Mjrovai/Seeed-XIAO-BLE-Sense


229Chapter 4: project practice advanced - tinyml applications

4.4 
Image Classification

In this section, let’s explore Computer Vision 
ML applications on the XIAO ESP32S3 Sense.

4.4.1 Things used in this 
project

Hardware components

• Seeed Studio Seeed XIAO ESP32S3 Sense × 1

4.4.2 Introduction
More and more, we are facing an artificial intelligence (AI) revolution where, as stated by Gartner, 
Edge AI has a very high impact potential, and it is for now!

In the “bull-eye” of emerging technologies, 
radar is the Edge Computer Vision, and when 
we talk about Machine Learning (ML) applied 
to vision, the f irst thing that comes to mind 
is Image Classif ication, a kind of ML “Hello 
World”!

Seeed Studio released a new affordable 
development board, the XIAO ESP32S3 Sense, 
which integrates a camera sensor, digital 
microphone, and SD card support. Combining 
e m b e d d e d  M L  co m p u t i n g  p owe r  a n d 
photography capability, 
this development board 
is a great tool to start 
with TinyML (intelligent 
voice and vision AI).

Software apps and online services

• Edge Impulse Studio

• Arduino IDE

https://www.seeedstudio.com/XIAO-ESP32S3-Sense-p-5639.html
https://www.hackster.io/EdgeImpulse/products/edge-impulse-studio?ref=project-958fd2
https://www.hackster.io/arduino/products/arduino-ide?ref=project-958fd2


230 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

XIAO ESP32S3 Sense Main Features

• Powerful MCU Board: Incorporate the ESP32S3 32-bit, dual-core, Xtensa processor chip operating up 
to 240 MHz, mounted multiple development ports, Arduino / MicroPython supported

• Advanced Functionality: Detachable OV2640 camera sensor for 1600 * 1200 resolution, compatible 
with OV5640 camera sensor, integrating an additional digital microphone

• Elaborate Power Design: Lithium battery charge management capability offers four power 
consumption models, which allows for deep sleep mode with power consumption as low as 14μA

• Great Memory for more Possibilities: Offer 8MB PSRAM and 8MB FLASH, supporting SD card slot for 
external 32GB FAT memory

• Outstanding RF performance: Support 2.4GHz Wi-Fi and BLE dual wireless communication, support 
100m+ remote communication when connected with U.FL antenna

• Thumb-sized Compact Design: 21 x 17.5mm, adopting the classic form factor of XIAO, suitable for 
space-limited projects like wearable devices

Below is the general board pinout:

For more details, please refer to the Seeed Studio WiKi page:

https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/

https://wiki.seeedstudio.com/xiao_esp32s3_getting_started/


231Chapter 4: project practice advanced - tinyml applications

4.4.3 Installing the XIAO ESP32S3 Sense on Arduino IDE
On Arduino IDE, navigate to File > Preferences, and fill in the URL:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.
json

on the field ==> Additional Boards Manager URLs

Next, open boards manager. Go to Tools > Board > Boards Manager… and enter with esp32. 
Select and install the most updated and stable package (avoid alpha versions) :

- Attention -

Alpha versions (for example, 3.x-alpha) do not work correctly with the XIAO and Edge 
Impulse. Use the last stable version (for example, 2.0.11) instead.

On Tools, select the Board (XIAO ESP32S3):

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json
https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json


232 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Last but not least, choose the Port where the ESP32S3 is connected.

That is it! The device should be OK. Let’s do some tests.

4.4.4 Testing the board with BLINK
The XIAO ESP32S3 Sense has a built-in LED that is connected to GPIO21. So, you can run the 
blink sketch as it is (using the LED_BUILTIN Arduino constant) or by changing the Blink sketch 
accordingly:

#define LED_BUILT_IN 21 

void setup() {
  pinMode(LED_BUILT_IN, OUTPUT); // Set the pin as output
}

// Remember that the pin work with inverted logic
// LOW to Turn on and HIGH to turn off
void loop() {
  digitalWrite(LED_BUILT_IN, LOW); //Turn on
  delay (1000); //Wait 1 sec
  digitalWrite(LED_BUILT_IN, HIGH); //Turn off
  delay (1000); //Wait 1 sec
}

Note that the pins work with inverted logic: LOW to Turn on 
and HIGH to turn off.

4.4.5 Connecting Sense module (Expansion Board)
When purchased, the expansion board is separated from the main board, but installing the 
expansion board is very simple. You need to align the connector on the expansion board 
with the B2B connector on the XIAO ESP32S3, press it hard, and when you hear a “click,” the 
installation is complete.

As commented in the introduction, the expansion board, or the “sense” part of the device, has a 
1600x1200 OV2640 camera, an SD card slot, and a digital microphone.

4.4.6 Microphone Test
Let’s start with sound detection. Go to the GitHub project and download the sketch: 
XIAOEsp2s3_Mic_Test and run it on the Arduino IDE:

http://GitHub project
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/XiaoEsp32s3_Mic_Test


233Chapter 4: project practice advanced - tinyml applications

When producing sound, you can verify it on the Serial Plotter.

Save recorded sound (.wav audio files) to a microSD card.

Now, the onboard SD Card reader can save .wav audio files. For that, we need to habilitate the 
XIAO PSRAM.

ESP32-S3 has only a few hundred kilobytes of internal RAM on the MCU chip. It can be 
insufficient for some purposes so that ESP32-S3 can use up to 16 MB of external PSRAM 
(Psuedostatic RAM) connected with the SPI flash chip. The external memory is incorporated 
in the memory map and, with certain restrictions, is usable in the same way as internal 
data RAM.

For a start, Insert the SD Card on the XIAO as 
shown in the photo below (the SD Card should 
be formatted to FAT32).

• Download the sketch Wav_Record, which 
you can find on GitHub.

• To execute the code (Wav Record), it is 
necessary to use the PSRAM function of the 
ESP-32 chip, so turn it on before uploading.: 
Tools>PSRAM: “OPI PSRAM”>OPI PSRAM

• Download the sketch Wav_Record, which 
you can find on GitHub.

• To execute the code (Wav Record), it is 
necessary to use the PSRAM function of the 
ESP-32 chip, so turn it on before uploading.: 
Tools>PSRAM: “OPI PSRAM”>OPI PSRAM

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Mic_Test/Wav_Record


234 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

• Run the code Wav_Record.ino
• This program is executed only once after the user turns on the serial monitor, recording for 

20 seconds and saving the recording file to a microSD card as “arduino_rec.wav.”

• When the “.” is output every 1 second in the serial monitor, the program execution is finished, 
and you can play the recorded sound file with the help of a card reader.



235Chapter 4: project practice advanced - tinyml applications

The sound quality is excellent!

The explanation of how the code works is beyond the scope of this tutorial, but you can find 
an excellent description on the wiki page.

4.4.7 Testing the Camera
To test the camera, you should download the folder take_photos_command from GitHub. The 
folder contains the sketch (.ino) and two .h files with camera details.

• Run the code: take_photos_command.ino. Open the Serial Monitor and send the command 
capture to capture and save the image on the SD Card:

Verify that [Both NL & CR] is selected on Serial Monitor.

Here is an example of a taken photo:

https://wiki.seeedstudio.com/xiao_esp32s3_sense_mic#save-recorded-sound-to-microsd-card
https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/take_photos_command


236 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

4.4.8 Testing WiFi
One of the differentiators of the XIAO ESP32S3 is its WiFi capability. So, let’s test its radio, 
scanning the wifi networks around it. You can do it by running one of the code examples on the 
board.

Go to Arduino IDE Examples and look for WiFI ==> WiFIScan

On the Serial monitor, you should see the wifi networks (SSIDs and RSSIs) in the range of your 
device. Here is what I got in the lab:

Simple WiFi Server (Turning LED ON/OFF)

Let’s test the device’s capability to behave as a WiFi Server. We will host a simple page on the 
device that sends commands to turn the XIAO built-in LED ON and OFF.

Like before, go to GitHub to download the folder with the sketch SimpleWiFiServer.

Before running the sketch, you should enter your network credentials:

const char* ssid     = "Your credentials here";
const char* password = "Your credentials here";

You can monitor how your server is working with the Serial Monitor.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/SimpleWiFiServer


237Chapter 4: project practice advanced - tinyml applications

Take the IP address and enter 
it on your browser:

You will see a page with links that can turn the built-in LED of your XIAO ON and OFF.

Streaming video to Web

Now that you know that you can send commands from the webpage to your device, let’s do the 
reverse. Let’s take the image captured by the camera and stream it to a webpage:

Download from GitHub the folder that contains the code: XIAO-ESP32S3-Streeming_Video.ino.

Remember that the folder contains the.ino file and a couple of .h files necessary to handle 
the camera.

Enter your credentials and run the sketch. On the Serial monitor, you can find the page address 
to enter in your browser:

Open the page on your browser (wait a few 
seconds to start the streaming). That’s it.

Streamlining what your camera is “seen” can 
be important when you position it to capture 
a dataset for an ML project (for example, using 
the code “take_phots_commands.ino”.

O f  c o u r s e ,  w e  c a n  d o  b o t h  t h i n g s 
simultaneously: show what the camera sees 
on the page and send a command to capture 
and save the image on the SD card. For that, 
you can use the code Camera_HTTP_Server_
STA, which can be downloaded from GitHub.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/Streeming_Video


238 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

The program will do the following tasks:

• Set the camera to JPEG output mode.

• Create a web page (for example ==> 
http://192.168.4.119//). The correct address 
will be displayed on the Serial Monitor.

• I f  s e r ve r .o n  ( “/c a p t u re ” ,  H T T P_G E T, 
serverCapture), the program takes a photo 
and sends it to the Web.

• It  is possible to rotate the image on 
webPage using the button [ROTATE]

• The command [CAPTURE] only will preview 
the image on the webpage, showing its 
size on the Serial Monitor

• The [SAVE] command will save an image 
on the SD Card and show the image on the 
browser.

• Saved images will follow a sequential naming (image1.jpg, image2.jpg.

This program can be used for an image dataset capture with an Image Classif ication 
project.

Inspect the code; it will be easier to understand how the camera works. This code was developed 
based on the great Rui Santos Tutorial ESP32-CAM Take Photo and Display in Web Server, which 
I invite all of you to visit.

Using the CameraWebServer

In the Arduino IDE, go to File > Examples > ESP32 > Camera, and select CameraWebServer

You also should comment on all cameras’ models, except the XIAO model pins:

#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM

And do not forget the Tools to enable the PSRAM.

Enter your wifi credentials and upload the code to the device:

https://randomnerdtutorials.com/esp32-cam-take-photo-display-web-server/


239Chapter 4: project practice advanced - tinyml applications

If the code is executed correctly, you should see the address on the Serial Monitor:

Copy the address on your browser and wait for the page to be uploaded. Select the camera 
resolution (for example, QVGA) and select [START STREAM]. Wait for a few seconds/minutes, 
depending on your connection. You can save an image on your computer download area using 
the [Save] button.



240 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

That’s it! You can save the images directly on your computer to be used on projects.

4.4.9 Fruits versus Veggies - A TinyML Image Classification 
Project

Now that we have an embedded camera running, it is time to try image classif ication. For 
comparative motive, we will replicate the same image classification project developed to be 
used with an old ESP2-CAM:

ESP32-CAM: TinyML Image Classification - Fruits vs Veggies

The whole idea of our project will be to train a model and proceed with inference on the XIAO 
ESP32S3 Sense. For training, we should find some data (in fact, tons of data!).

But first of all, we need a goal! What do we want to classify?

With TinyML, a set of techniques associated with machine learning inference on embedded 
devices, we should limit the classif ication to three or four categories due to limitations 
(mainly memory). We will differentiate apples from bananas and potatoes (you can try other 
categories).

So, let’s f ind a specific dataset that includes images from those categories. Kaggle is a good 
start:

https://www.kaggle.com/kritikseth/fruit-and-vegetable-image-recognition

This dataset contains images of the following food items:

• Fruits - banana, apple, pear, grapes, orange, kiwi, watermelon, pomegranate, pineapple, 
mango.

• Vegetables - cucumber, carrot, capsicum, onion, potato, lemon, tomato, radish, beetroot, 
cabbage, lettuce, spinach, soybean, cauliflower, bell pepper, chili pepper, turnip, corn, 
sweetcorn, sweet potato, paprika, jalepeño, ginger, garlic, peas, eggplant.

Each category is split into the train (100 images), test (10 images), and validation (10 images).

• Download the dataset from the Kaggle website to your computer.

Optionally, you can add some fresh photos of bananas, apples, and potatoes from your 
home kitchen, using, for example, the codes discussed in the last section.

https://www.hackster.io/mjrobot/esp32-cam-tinyml-image-classification-fruits-vs-veggies-4ab970


241Chapter 4: project practice advanced - tinyml applications

4.4.10 Training the model with Edge Impulse Studio
We will use the Edge Impulse Studio to train our model. As you know, Edge Impulse is a leading 
development platform for machine learning on edge devices.

Enter your account credentials (or create a free account) at Edge Impulse. Next, create a new 
project:

Data Acquisition

Next, on the UPLOAD DATA section, upload from your computer the files from chosen categories:

It would be best if you now had your training dataset split into three classes of data:

It would be best if you now had your training dataset split into three classes of data:

https://www.edgeimpulse.com/


242 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

You can upload extra data for further model testing or split the training data. I will leave it 
as it is to use the most data possible.

Impulse Design

An impulse takes raw data (in this case, images), extracts features (resize pictures), and 
then uses a learning block to classify new data.

Classifying images is the most common use of deep learning, but much data should be used 
to accomplish this task. We have around 90 images for each category. Is this number enough? 
Not at all! We will need thousands of images to “teach or model” to differentiate an apple from a 
banana. But, we can solve this issue by re-training a previously trained model with thousands of 
images. We call this technique “Transfer Learning” (TL).



243Chapter 4: project practice advanced - tinyml applications

With TL, we can fine-tune a pre-trained image classification model on our data, performing well 
even with relatively small image datasets (our case).

So, starting from the raw images, we will resize them (96x96) pixels and feed them to our 
Transfer Learning block:

Pre-processing (Feature generation)

Besides resizing the images, we can change them to Grayscale or keep the actual RGB color 
depth. Let’s start selecting Grayscale. Doing that, each one of our data samples will have 
dimension 9, 216 features (96x96x1). Keeping RGB, this dimension would be three times bigger. 
Working with Grayscale helps to reduce the amount of final memory needed for inference.

Do not forget to [Save parameters].” This will generate the features to be used in training.



244 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Training (Transfer Learning & Data Augmentation)

In 2007, Google introduced MobileNetV1, a family of general-purpose computer vision neural 
networks designed with mobile devices in mind to support classification, detection, and more. 
MobileNets are small, low-latency, low-power models parameterized to meet the resource 
constraints of various use cases.

Although the base MobileNet architecture is already tiny and has low latency, many times, a 
specif ic use case or application may require the model to be smaller and faster. MobileNet 
introduces a straightforward parameter α (alpha) called width multiplier to construct these 
smaller, less computationally expensive models. The role of the width multiplier α is to thin a 
network uniformly at each layer.

Edge Impulse Studio has available MobileNet V1 (96x96 images) and V2 (96x96 and 160x160 
images), with several different α values (from 0.05 to 1.0). For example, you will get the highest 
accuracy with V2, 160x160 images, and α=1.0. Of course, there is a trade-off. The higher the 
accuracy, the more memory (around 1.3M RAM and 2.6M ROM) will be needed to run the model, 
implying more latency.

The smaller footprint will be obtained at another extreme with MobileNet V1 and α=0.10 (around 
53.2K RAM and 101K ROM).

When we first published this project to be running on an ESP32-CAM, we stayed at the lower 
side of possibilities, which guaranteed the inference with small latency but not with high 
accuracy. For this first pass, we will keep this model design (MobileNet V1 and α=0.10).

Another necessary technique to use with deep learning is data augmentation . Data 
augmentation is a method that can help improve the accuracy of machine learning models, 
creating additional artificial data. A data augmentation system makes small, random changes 
to your training data during the training process (such as flipping, cropping, or rotating the 
images).

Under the rood, here you can see how Edge Impulse implements a data Augmentation policy 
on your data:

# Implements the data augmentation policy
def augment_image(image, label):
    # Flips the image randomly
    image = tf.image.random_flip_left_right(image)

    # Increase the image size, then randomly crop it down to
    # the original dimensions
    resize_factor = random.uniform(1, 1.2)
    new_height = math.floor(resize_factor * INPUT_SHAPE[0])
    new_width = math.floor(resize_factor * INPUT_SHAPE[1])
    image = tf.image.resize_with_crop_or_pad(image, new_height, new_width)
    image = tf.image.random_crop(image, size=INPUT_SHAPE)

    # Vary the brightness of the image
    image = tf.image.random_brightness(image, max_delta=0.2)

    return image, label

Exposure to these variations during training can help prevent your model from taking shortcuts 
by “memorizing” superficial clues in your training data, meaning it may better reflect the deep 

https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html


245Chapter 4: project practice advanced - tinyml applications

underlying patterns in your dataset.

The final layer of our model will have 16 neurons with a 10% dropout for overfitting prevention. 
Here is the Training output:

The result could be better. The model reached around 77% accuracy, but the amount of RAM 
expected to be used during the inference is relatively tiny (about 60 KBytes), which is very good.

Deployment

The trained model will be deployed as a .zip Arduino library:



246 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Open your Arduino IDE, and under Sketch, go to Include Library and add.ZIP Library. Please 
select the file you download from Edge Impulse Studio, and that’s it!

Under the Examples tab on Arduino IDE, you should find a sketch code under your project name.



247Chapter 4: project practice advanced - tinyml applications

Open the Static Buffer example:

You can see that the first line of code is exactly the calling of a library with all the necessary stuff 
for running inference on your device.

#include <XIAO-ESP32S3-CAM-Fruits-vs-Veggies_inferencing.h>

Of course, this is a generic code (a “template”) that only gets one sample of raw data (stored on 
the variable: features = {} and runs the classifier, doing the inference. The result is shown on the 
Serial Monitor.

We should get the sample (image) from the camera and pre-process it (resizing to 96x96, 
converting to grayscale, and flatting it). This will be the input tensor of our model. The output 
tensor will be a vector with three values (labels), showing the probabilities of each one of the 
classes.

Returning to your project (Tab Image), copy one of the Raw Data Sample:



248 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

9, 216 features will be copied to the clipboard. This is the input tensor (a flattened image of 
96x96x1), in this case, bananas. Past this Input tensor on features[] = {0xb2d77b, 0xb5d687, 
0xd8e8c0, 0xeaecba, 0xc2cf67, …}

Edge Impulse included the library ESP NN in its SDK, which contains optimized NN (Neural 
Network) functions for various Espressif chips, including the ESP32S3 (running at Arduino IDE).

When running the inference, you should get the highest score for “banana.”

https://github.com/espressif/esp-nn


249Chapter 4: project practice advanced - tinyml applications

Great news! Our device handles an inference, discovering that the input image is a banana. Also, 
note that the inference time was around 317ms, resulting in a maximum of 3 fps if you tried to 
classify images from a video. It is a better result than the ESP32 CAM (525ms of latency).

Now, we should incorporate the camera and classify images in real time.

Go to the Arduino IDE Examples and download from your project the sketch esp32_camera:

You should change lines 32 to 75, which define the camera model and pins, using the data 
related to our model. Copy and paste the below lines, replacing the lines 32-75:

#define PWDN_GPIO_NUM     -1 
#define RESET_GPIO_NUM    -1 
#define XCLK_GPIO_NUM     10 
#define SIOD_GPIO_NUM     40 
#define SIOC_GPIO_NUM     39
#define Y9_GPIO_NUM       48 
#define Y8_GPIO_NUM       11 
#define Y7_GPIO_NUM       12 

#define Y6_GPIO_NUM       14 
#define Y5_GPIO_NUM       16 
#define Y4_GPIO_NUM       18 
#define Y3_GPIO_NUM       17 
#define Y2_GPIO_NUM       15 
#define VSYNC_GPIO_NUM    38 
#define HREF_GPIO_NUM     47 
#define PCLK_GPIO_NUM     13

Here you can see the resulting code:



250 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Other tests:

The modified sketch can be downloaded from GitHub: xiao_esp32s3_camera.

Note that you can optionally keep the pins as a .h file as we did in previous sections.

Upload the code to your XIAO ESP32S3 Sense, and you should be OK to start classifying your 
fruits and vegetables! You can check the result on Serial Monitor.

4.4.11 Testing the Model 
(Inference)

Getting a photo with the camera, the 
classification result will appear on the Serial 
Monitor:

4.4.12 Testing with a Bigger Model
Now, let’s go to the other side of the model size. Let’s select a MobilinetV2 96x96 0.35, having as 
input RGB images.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense/tree/main/xiao_esp32s3_camera


251Chapter 4: project practice advanced - tinyml applications

Even with a bigger model, the accuracy could be better, and the amount of memory necessary 
to run the model increases five times, with latency increasing seven times.

Note that the performance here is estimated with a smaller device, the ESP-EYE. The actual 
inference with the ESP32S3 should be better.

To improve our model, we will need to train more images.

Even though our model did not improve accuracy, let’s test whether the XIAO can handle such a 
bigger model. We will do a simple inference test with the Static Buffer sketch.

Let’s redeploy the model. If the EON Compiler is enabled when you generate the library, the total 
memory needed for inference should be reduced, but it does not influence accuracy.

Doing an inference with MobilinetV2 96x96 0.35, having as input RGB images, the latency was 
219ms, which is great for such a bigger model.



252 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

For the test, I trained the model again, using the smallest version of MobileNet V2, with an alpha 
of 0.05. Interesting that the result in accuracy was higher.

Note that the estimated latency for an Arduino Portenta (ou Nicla), running with a clock of 
480MHz is 45ms.

Deploying the model, I got an inference of only 135ms, remembering that the XIAO runs with 
half of the clock used by the Portenta/Nicla (240MHz):



253Chapter 4: project practice advanced - tinyml applications

4.4.13 Running inference on the SenseCraft-Web-Toolkit
One signif icant limitation of viewing inference on Arduino IDE is that we can not see what 
the camera focuses on. A good alternative is the SenseCraft-Web-Toolkit, a visual model 
deployment tool provided by SSCMA(Seeed SenseCraft Model Assistant). This tool allows you 
to deploy models to various platforms easily through simple operations. The tool offers a user-
friendly interface and does not require any coding.

Follow the following steps to start the SenseCraft-Web-Toolkit:

1. Open the SenseCraft-Web-Toolkit website.

2. Connect the XIAO to your computer:

• Having the XIAO connected, select it as below:

• Select the device/Port and press [Connect]:

You can try several Computer Vision models previously uploaded by Seeed Studio. Try them 
and have fun!

https://sensecraftma.seeed.cc/
https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process


254 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

In our case, we will use the blue button at the bottom of the page: [Upload Custom AI Model].

But first, we must download from Edge Impulse Studio our quantized .tflite model.

3. Go to your project at Edge Impulse Studio, or clone this one:

• XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN

4. On the Dashboard, download the model (“block output”): Transfer learning model - 
TensorFlow Lite (int8 quantized).

5. On SenseCraft-Web-Toolkit, use the blue button at the bottom of the page: [Upload Custom 
AI Model]. A window will pop up. Enter the Model file that you downloaded to your computer 
from Edge Impulse Studio, choose a Model Name, and enter with labels (ID: Object):

Note that you should use the labels trained on EI Studio, entering them in alphabetic order 
(in our case: apple, banana, potato).

After a few seconds (or minutes), the model will be uploaded to your device, and the camera 
image will appear in real-time on the Preview Sector:

https://studio.edgeimpulse.com/public/228516/live


255Chapter 4: project practice advanced - tinyml applications

The Classification result will be at the top of the image. You can also select the Confidence of 
your inference cursor Confidence.

Clicking on the top button (Device Log), you can open a Serial Monitor to follow the inference, 
the same that we have done with the Arduino IDE:

On Device Log, you will get information as:

• Preprocess time (image capture and Crop): 4ms;

• Inference time (model latency): 106ms,

• Postprocess time (display of the image and inclusion of data): 0ms.

• Output tensor (classes), for example: [[89,0]]; where 0 is Apple (and 1is banana and 2 is potato)



256 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Here are other screenshots:

4.4.14 Conclusion
The XIAO ESP32S3 Sense is very flexible, inexpensive, and easy to program. The project proves 
the potential of TinyML. Memory is not an issue; the device can handle many post-processing 
tasks, including communication.

You will find the last version of the codes on the GitHub repository: XIAO-ESP32S3-Sense.

https://github.com/Mjrovai/XIAO-ESP32S3-Sense


257Chapter 4: project practice advanced - tinyml applications

4.5 
Object Detection

This section will cover other critical computer 
vision applications, such as object detection 
using the XIAO ESP32S3 Sense, Edge Impulse 
Studio, and Arduino IDE.

4.5.1 Things used in this 
project

Hardware components

• Seeed Studio Seeed XIAO ESP32S3 Sense × 1

4.5.2 Introduction
In the last section regarding Computer Vision (CV) and the XIAO ESP32S3, Image Classification, 
we learned how to set up and classify images with this remarkable development board. 
Continuing our CV journey, we will explore Object Detection on microcontrollers.

Object Detection versus Image Classification
The main task with Image Classification models is to identify the most probable object category 
present on an image, for example, to classify between a cat or a dog, dominant “objects” in an image:

Software apps and online services

• Edge Impulse Studio

• Arduino IDE

But what happens if there is no dominant 
category in the image?

https://www.hackster.io/EdgeImpulse/products/edge-impulse-studio?ref=project-958fd2
https://www.hackster.io/arduino/products/arduino-ide?ref=project-958fd2


258 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

An image classification model identifies the above image utterly wrong as an “ashcan,” possibly 
due to the color tonalities.

The model used in the previous example is the MobileNet, trained with a large dataset, the 
ImageNet, running on a Raspberry Pi.

To solve this issue, we need another type of model, where not only multiple categories (or 
labels) can be found but also where the objects are located on a given image.

As we can imagine, such models are much more complicated 
and bigger, for example, the MobileNetV2 SSD FPN-Lite 
320x320, trained with the COCO dataset. This pre-trained 
object detection model is designed to locate up to 10 objects 
within an image, outputting a bounding box for each object 
detected. The below image is the result of such a model 
running on a Raspberry Pi:

Those models used for object detection (such as the MobileNet SSD or YOLO) usually have 
several MB in size, which is OK for use with Raspberry Pi but unsuitable for use with embedded 
devices, where the RAM usually is lower than 1M Bytes or at least a few MB as in the case of the 
XIAO ESP32S3.

An Innovative Solution for Object Detection: FOMO
Edge Impulse launched in 2022, FOMO (Faster Objects, More Objects), a novel solution to 
perform object detection on embedded devices, such as the Nicla Vision and Portenta (Cortex 
M7), on Cortex M4F CPUs (Arduino Nano33 and OpenMV M4 series) as well the Espressif ESP32 
devices (ESP-CAM, ESP-EYE and XIAO ESP32S3 Sense).

In this Hands-On project, we will explore Object Detection using FOMO.

To understand more about FOMO, you can go into the official FOMO announcement by 
Edge Impulse, where Louis Moreau and Mat Kelcey explain in detail how it works.

The Object Detection Project Goal
All Machine Learning projects need to start with a detailed 
goal. Let’s assume we are in an industrial or rural facility and 
must sort and count oranges (fruits) and particular frogs 
(bugs).

In other words, we should perform a multi-label classification, 
where each image can have three classes:

• Background (No objects)

• Fruit

• Bug

Here are some not labeled image samples that we should use to detect the objects (fruits and bugs):

https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://www.edgeimpulse.com/blog/announcing-fomo-faster-objects-more-objects


259Chapter 4: project practice advanced - tinyml applications

We are interested in which object is in the image, its location (centroid), and how many we can 
find on it. The object’s size is not detected with FOMO, as with MobileNet SSD or YOLO, where 
the Bounding Box is one of the model outputs.

We will develop the project using the XIAO ESP32S3 for image capture and model inference. 
The ML project will be developed using the Edge Impulse Studio. But before starting the object 
detection project in the Studio, let’s create a raw dataset (not labeled) with images that contain 
the objects to be detected.

Data Collection
You can use the XIAO, your phone, or other devices for the image capture. Here, we will use the 
XIAO with a code in the ESP32 library.

Collecting Dataset with the XIAO ESP32S3
Open the Arduino IDE and select the XIAO_ESP32S3 board (and the port where it is connected). 
On File > Examples > ESP32 > Camera, select CameraWebServer.

On the BOARDS MANAGER panel, confirm that you have installed the latest “stable” package.

- Attention -

Alpha versions (for example, 3.x-alpha) do not work correctly with the XIAO and Edge 
Impulse. Use the last stable version (for example, 2.0.11) instead.

You also should comment on all cameras’ models, except the XIAO model pins:

#define CAMERA_MODEL_XIAO_ESP32S3 // Has PSRAM

And on Tools, enable the PSRAM. Enter your wifi credentials and upload the code to the device:

If the code is executed correctly, you should see the address on the Serial Monitor:



260 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Copy the address on your browser and wait for the page to be uploaded. Select the camera 
resolution (for example, QVGA) and select [START STREAM]. Wait for a few seconds/minutes, 
depending on your connection. You can save an image on your computer download area using 
the [Save] button.

Edge impulse suggests that the objects should be of similar size and not overlapping for better 
performance. This is OK in an industrial facility, where the camera should be fixed, keeping the 
same distance from the objects to be detected. Despite that, we will also try using mixed sizes 
and positions to see the result.

We do not need to create separate folders for our images because each contains multiple 
labels.

We suggest around 50 images mixing the objects and varying the number of each appearing 
on the scene. Try to capture different angles, backgrounds, and light conditions.

The stored images use a QVGA frame size 320x240 and RGB565 (color pixel format).

After capturing your dataset, [Stop Stream] and move your images to a folder.

Edge Impulse Studio

Setup the project

Go to Edge Impulse Studio, enter your credentials at Login (or create an account), and start a 
new project.

https://www.edgeimpulse.com/


261Chapter 4: project practice advanced - tinyml applications

Here, you can clone the project developed for this hands-on: XIAO-ESP32S3-Sense-Object_
Detection

On your Project Dashboard, go down and on Project info and select Bounding boxes (object 
detection) and Espressif ESP-EYE (most similar to our board) as your Target Device:

Uploading the unlabeled data
On Studio, go to the Data acquisition tab, and on the UPLOAD DATA section, upload files 
captured as a folder from your computer.

https://studio.edgeimpulse.com/public/315759/latest
https://studio.edgeimpulse.com/public/315759/latest


262 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

You can leave for the Studio to split your data automatically between Train and Test or do it 
manually. We will upload all of them as training.

All the not-labeled images (47) were uploaded but must be labeled appropriately before being 
used as a project dataset. The Studio has a tool for that purpose, which you can find in the link 
Labeling queue (47).

There are two ways you can use to perform AI-assisted labeling on the Edge Impulse Studio (free 
version):

• Using yolov5

• Tracking objects between frames



263Chapter 4: project practice advanced - tinyml applications

Edge Impulse launched an auto-labeling feature for Enterprise customers, easing labeling 
tasks in object detection projects.

Ordinary objects can quickly be identified and labeled using an existing library of pre-trained 
object detection models from YOLOv5 (trained with the COCO dataset). But since, in our case, 
the objects are not part of COCO datasets, we should select the option of tracking objects. With 
this option, once you draw bounding boxes and label the images in one frame, the objects 
will be tracked automatically from frame to frame, partially labeling the new ones (not all are 
correctly labeled).

You can use the EI uploader to import your data if you already have a labeled dataset 
containing bounding boxes.

Labeling the Dataset
Starting with the first image of your unlabeled data, use your mouse to drag a box around an 
object to add a label. Then click Save labels to advance to the next item.

Continue with this process until the queue is empty. At the end, all images should have the 
objects labeled as those samples below:

Next, review the labeled samples on the Data acquisition tab. If one of the labels is wrong, you 
can edit it using the three dots menu after the sample name:

https://docs.edgeimpulse.com/docs/edge-impulse-studio/data-acquisition/auto-labeler
https://docs.edgeimpulse.com/docs/tools/edge-impulse-cli/cli-uploader#bounding-boxes


264 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

You will be guided to replace the wrong label and correct the dataset.

Balancing the dataset and split Train/Test
After labeling all data, it was realized that the class fruit had many more samples than the bug. 
So, 11 new and additional bug images were collected (ending with 58 images). After labeling 
them, it is time to select some images and move them to the test dataset. You can do it using 
the three-dot menu after the image name. I selected six images, representing 13% of the total 
dataset.



265Chapter 4: project practice advanced - tinyml applications

4.5.5 The Impulse Design
In this phase, you should define how to:

• Pre-processing consists of resizing the individual images from 320 x 240 to 96 x 96 and 
squashing them (squared form, without cropping). Afterward, the images are converted 
from RGB to Grayscale.

• Design a Model, in this case, “Object Detection.”

Preprocessing all dataset
In this section, select Color depth as Grayscale, suitable for use with FOMO models and Save 
parameters.



266 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

The Studio moves automatically to the next section, Generate features, where all samples will be 
pre-processed, resulting in a dataset with individual 96x96x1 images or 9,216 features.

The feature explorer shows that all samples evidence a good separation after the feature 
generation.

Some samples seem to be in the wrong space, but clicking on them confirms the correct 
labeling.



267Chapter 4: project practice advanced - tinyml applications

4.5.6 Model Design, Training, and Test
We will use FOMO, an object detection model based on MobileNetV2 (alpha 0.35) designed to 
coarsely segment an image into a grid of background vs objects of interest (here, boxes and 
wheels).

FOMO is an innovative machine learning model for object detection, which can use up to 30 
times less energy and memory than traditional models like Mobilenet SSD and YOLOv5. FOMO 
can operate on microcontrollers with less than 200 KB of RAM. The main reason this is possible 
is that while other models calculate the object’s size by drawing a square around it (bounding 
box), FOMO ignores the size of the image, providing only the information about where the 
object is located in the image through its centroid coordinates.

How FOMO works?

FOMO takes the image in grayscale and 
divides it into blocks of pixels using a factor 
of 8. For the input of 96x96, the grid would be 
12x12 (96/8=12). Next, FOMO will run a classifier 
through each pixel block to calculate the 
probability that there is a box or a wheel in 
each of them and, subsequently, determine 
the regions that have the highest probability 
of containing the object (If a pixel block has 
no objects, it will be classified as background). 
From the overlap of the final region, the FOMO 
provides the coordinates (related to the image 
dimensions) of the centroid of this region.

For training, we should select a pre-trained model. Let’s use the FOMO (Faster Objects, More 
Objects) MobileNetV2 0.35. This model uses around 250KB of RAM and 80KB of ROM (Flash), 
which suits well with our board.



268 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Regarding the training hyper-parameters, the model will be trained with:

• Epochs: 60

• Batch size: 32

• Learning Rate: 0.001.

For validation during training, 20% of the dataset (validation_dataset) will be spared. For the 
remaining 80% (train_dataset), we will apply Data Augmentation, which will randomly flip, 
change the size and brightness of the image, and crop them, artificially increasing the number 
of samples on the dataset for training.

As a result, the model ends with an overall F1 score of 85%, similar to the result when using the 
test data (83%).

Note that FOMO automatically added a 3rd label background to the two previously defined 
(box and wheel).

In object detection tasks, accuracy is generally not the primary evaluation metric. Object 
detection involves classifying objects and providing bounding boxes around them, making 
it a more complex problem than simple classification. The issue is that we do not have the 
bounding box, only the centroids. In short, using accuracy as a metric could be misleading 
and may not provide a complete understanding of how well the model is performing. 
Because of that, we will use the F1 score.

Test model with “Live Classification”
Once our model is trained, we can test it using the Live Classification tool. On the correspondent 
section, click on Connect a development board icon (a small MCU) and scan the QR code with 
your phone.

https://learnopencv.com/mean-average-precision-map-object-detection-model-evaluation-metric/


269Chapter 4: project practice advanced - tinyml applications

Once connected, you can use the smartphone to capture actual images to be tested by the 
trained model on Edge Impulse Studio.

One thing to be noted is that the model can produce false positives and negatives. This can be 
minimized by defining a proper Confidence Threshold (use the Three dots menu for the setup). 
Try with 0.8 or more.

4.5.7 Deploying the Model (Arduino IDE)
Select the Arduino Library and Quantized (int8) model, enable the EON Compiler on the Deploy 
Tab, and press [Build].



270 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Open your Arduino IDE, and under Sketch, go to Include Library and add.ZIP Library. Select the 
file you download from Edge Impulse Studio, and that’s it!

Under the Examples tab on Arduino IDE, you should f ind a sketch code (esp32 > esp32_
camera) under your project name.



271Chapter 4: project practice advanced - tinyml applications

You should change lines 32 to 75, which define the camera model and pins, using the data 
related to our model. Copy and paste the below lines, replacing the lines 32-75:

#define PWDN_GPIO_NUM     -1 
#define RESET_GPIO_NUM    -1 
#define XCLK_GPIO_NUM     10 
#define SIOD_GPIO_NUM     40 
#define SIOC_GPIO_NUM     39
#define Y9_GPIO_NUM       48 
#define Y8_GPIO_NUM       11 
#define Y7_GPIO_NUM       12 
#define Y6_GPIO_NUM       14 
#define Y5_GPIO_NUM       16 
#define Y4_GPIO_NUM       18 
#define Y3_GPIO_NUM       17 
#define Y2_GPIO_NUM       15 
#define VSYNC_GPIO_NUM    38 
#define HREF_GPIO_NUM     47 
#define PCLK_GPIO_NUM     13

Here you can see the resulting code:



272 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Upload the code to your XIAO ESP32S3 Sense, and you should be OK to start detecting fruits and 
bugs. You can check the result on Serial Monitor.

Background

Fruits

Bugs



273Chapter 4: project practice advanced - tinyml applications

Note that the model latency is 143ms, and the frame rate per second is around 7 fps (similar to 
what we got with the Image Classification project). This happens because FOMO is cleverly built 
over a CNN model, not with an object detection model like the SSD MobileNet. For example, 
when running a MobileNetV2 SSD FPN-Lite 320x320 model on a Raspberry Pi 4, the latency is 
around five times higher (around 1.5 fps).

4.5.8 Deploying the Model (SenseCraft-Web-Toolkit)
As discussed in the Image Classif ication chapter, verifying inference with Image models on 
Arduino IDE is very challenging because we can not see what the camera focuses on. Again, let’s 
use the SenseCraft-Web Toolkit.

Follow the following steps to start the SenseCraft-Web-Toolkit:

1. Open the SenseCraft-Web-Toolkit website.

2. Connect the XIAO to your computer:

• Having the XIAO connected, select it as below:

• Select the device/Port and press [Connect]:

https://seeed-studio.github.io/SenseCraft-Web-Toolkit/#/setup/process


274 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

You can try several Computer Vision models previously uploaded by Seeed Studio. Try them 
and have fun!

In our case, we will use the blue button at the bottom of the page: [Upload Custom AI Model].

But first, we must download from Edge Impulse Studio our quantized .tflite model.

3. Go to your project at Edge Impulse Studio, or clone this one:

• XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN

4. On Dashboard, download the model (“block output”): Object Detection model - 
TensorFlow Lite (int8 quantized)

5. On SenseCraft-Web-Toolkit, use the blue button at the bottom of the page: [Upload 
Custom AI Model]. A window will pop up. Enter the Model f ile that you downloaded to 
your computer from Edge Impulse Studio, choose a Model Name, and enter with labels (ID: 
Object):

http://XIAO-ESP32S3-CAM-Fruits-vs-Veggies-v1-ESP-NN 


275Chapter 4: project practice advanced - tinyml applications

The detected objects will be marked (the centroid). You can select the Confidence of your 
inference cursor Conf idence. and IoU, which is used to assess the accuracy of predicted 
bounding boxes compared to truth bounding boxes

Clicking on the top button (Device Log), you can open a Serial Monitor to follow the inference, as 
we did with the Arduino IDE.

On Device Log, you will get information as:

• Preprocess time (image capture and Crop): 3 ms;

• Inference time (model latency): 115 ms,

• Postprocess time (display of the image and marking objects): 1 ms.

• Output tensor (boxes), for example, one of the boxes: [[30,150, 20, 20,97, 2]]; where 30,150, 20, 
20 are the coordinates of the box (around the centroid); 97 is the inference result, and 2 is the 
class (in this case 2: fruit)

Note that in the above example, we got 5 boxes because none of the fruits got 3 centroids. 
One solution will be post-processing, where we can aggregate close centroids in one.

Note that you should use the labels trained on EI Studio, entering them in alphabetic order 
(in our case: background, bug, fruit).

After a few seconds (or minutes), the model will be uploaded to your device, and the camera 
image will appear in real-time on the Preview Sector:



276 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Here are other screen shots:

4.5.9 Conclusion
FOMO is a significant leap in the image processing space, as Louis Moreau and Mat Kelcey put it 
during its launch in 2022:

FOMO is a ground-breaking algorithm that brings real-time object detection, tracking, and 
counting to microcontrollers for the first time.

Multiple possibilities exist for exploring object detection (and, more precisely, counting them) on 
embedded devices.



277Chapter 4: project practice advanced - tinyml applications

4.6 
To learn more

This section contains links to courses, books, and projects to learn more about Machine Learning 
and TinyML applications.

Online Courses
Harvard School of Engineering and Applied Sciences - CS249r: Tiny Machine Learning

Professional Certificate in Tiny Machine Learning (TinyML) – edX/Harvard

Introduction to Embedded Machine Learning - Coursera/Edge Impulse

Computer Vision with Embedded Machine Learning - Coursera/Edge Impulse

UNIFEI-IESTI01 TinyML: “Machine Learning for Embedding Devices”

Books
“Python for Data Analysis by Wes McKinney”

“Deep Learning with Python” by François Chollet - GitHub Notebooks

“TinyML” by Pete Warden, Daniel Situnayake

“TinyML Cookbook” by Gian Marco Iodice

“Technical Strategy for AI Engineers, In the Era of Deep Learning” by Andrew Ng

“AI at the Edge” book by Daniel Situnayake, Jenny Plunkett

“MACHINE LEARNING SYSTEMS for TinyML” Collaborative effort

Projects Repositories
Edge Impulse Expert Network

MRovai XIAO ESP32S3 Movement/Sound/Image

https://sites.google.com/g.harvard.edu/tinyml/home
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
https://www.coursera.org/learn/introduction-to-embedded-machine-learning
https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning
https://github.com/Mjrovai/UNIFEI-IESTI01-TinyML-2023.1
https://wesmckinney.com/book/
https://www.manning.com/books/deep-learning-with-python
https://github.com/fchollet/deep-learning-with-python-notebooks
https://www.oreilly.com/library/view/tinyml/9781492052036/
https://github.com/PacktPublishing/TinyML-Cookbook
https://github.com/ajaymache/machine-learning-yearning/blob/master/full%20book/machine-learning-yearning.pdf
https://www.oreilly.com/library/view/ai-at-the/9781098120191/
https://harvard-edge.github.io/cs249r_book/
https://docs.edgeimpulse.com/experts/
https://github.com/Mjrovai/XIAO-ESP32S3-Sense


278 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Chapter 5:  
Creative Experiments

Since its launch, the Seeed Studio XIAO series has been widely acclaimed for its 
compact size, powerful performance, and versatile product range. The maker 
community has produced a large number of projects created with XIAO. Due to space 
constraints, we have selected some outstanding projects made with XIAO by our 
makers. These projects fully demonstrate the powerful functions and wide applications 
of XIAO. Let us follow the makers’ steps, stimulate creativity, and explore the endless 
possibilities of XIAO. We hope you can draw inspiration from these projects, use your 
imagination, and explore new territories with XIAO.



279Chapter 5: creative experiments

5.1 
Creative and useful XIAO projects

After going through the sections in this book, you might have many novel ideas that you can’t 
wait to implement. But before you rush into it, let’s take a look at what interesting stuff others 
have done with XIAO. For this, we have collected some user-made project cases using XIAO 
primarily from the globally renowned innovators’ communities like hackster.io and instructables, 
to help you see more possibilities of XIAO.

5.1.1 Drone-borne Salt Water Tracker (SWT)
https://www.hackster.io/txnghia/salt-water-tracker-swt-cb68be

Author: Nghia Tran

The ‘Salt Water Tracker’ project, using the XIAO BLE nRF52840 Sense, addresses the problem of 
seawater erosion in rice fields in areas like the Mekong Delta in Vietnam. The project integrates a 
saltwater sensor system onto a Hovergames drone, turning the drone into an efficient saltwater 
tracking tool. This project helps farmers monitor the salinity of rivers and large water networks 
in real-time to ensure water safety and guide the allocation of reservoir water. The system 
also features temperature, water quality, air quality sensors, and a camera function for taking 
pictures or videos of the water area and assisting in determining water type and conditions.

https://www.hackster.io/
http://www.instructables.com/
https://www.hackster.io/txnghia/salt-water-tracker-swt-cb68be
https://www.hackster.io/txnghia
https://www.hackster.io/seeed/products/seeed-xiao-ble-nrf52840-sense1?ref=project-cb68be


280 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

5.1.2 SAJAC Project: Intelligent Jacket for Caving Adventure
https://www.hackster.io/rifqiabdillah/sajac-project-smart-jacket-for-caving-0e6a19

Author: Rifqi Abdillah

Caving has become increasingly popular in recent years. However, cavers may face a variety of 
safety hazards, including extreme temperatures, damp air, low air pressure, poor air quality, and 
toxic gases. To address this, we developed the SAJAC project, an intelligent monitoring system 
designed to observe environmental conditions within a cave. The system uses Nicla Sense ME to 
measure the environmental quality around the user and sends the results to the SAJAC app on 
the user’s smartphone. If the cave conditions are not suitable for exploration, Nicla Sense ME or 
the user’s smartphone will receive notification reminders. Meanwhile, at each checkpoint within 
the cave, there will be a transmitter directly connected to the guard outside the cave. The user 
can quickly seek help via the transmitter when in danger.

Considering that there is no internet connection in the cave, we use a LoRa communication 
system based on XIAO ESP32C3 to transmit checkpoint data. When the user reaches the 
checkpoint, they just need to connect to the transmitter and press the “send” button. If the user 
encounters a situation where they cannot continue the exploration, they can decide whether to 
return on their own or wait for the guard’s response.

The main post guard will use LoRa to receive data transmitted from within the cave. There is 
a Wio Terminal equipped with Grove Wio E5 at the outpost to receive data from transmitters 
inside the cave. The Wio Terminal only needs a 5-volt power supply, suitable for places with 
limited power.

https://www.hackster.io/rifqiabdillah/sajac-project-smart-jacket-for-caving-0e6a19
https://www.hackster.io/rifqiabdillah


281Chapter 5: creative experiments

5.1.3 Bicycle Computer on Spresense
https://www.hackster.io/jens6151/bicycle-computer-on-spresense-b0e332

Author: Jens

The goal of this project is to build a bike computer using the Sony Spresense main board, LTE 
expansion board, XIAO, and other peripherals. The main features include:

1. Capture a low-resolution video stream and display it on a monitor. Option to take high-
resolution photos and store them on an SD card.

2. Capture mono audio, using the OPUS codec and OGG container format for high 
compression, to be sent or recorded to SD card via an LTE-M connection.

3. Track location via GNSS, combining the location with weather data and points of interest (POI) 
data received from cloud services via an LTE connection.

4. Connect bike sensors (currently heart rate) via Bluetooth Low Energy, display data on the 
monitor, and record.

5. Remote access to the camera, real-
time audio stream, and various data 
(including location) via MQTT.

6. Theft detection and notif ication via 
GNSS geofencing, accelerometer, and 
monitoring for nearby smartphones.

This project by Jens demonstrates the 
astonishing complexity of a hardcore 
prototype project, as can be seen from the 
schematic on the right.

https://www.hackster.io/jens6151/bicycle-computer-on-spresense-b0e332
https://www.hackster.io/jens6151


282 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

5.1.4 IoT AI-driven Yogurt 
Processing & Texture 
Prediction W/ Blynk

https://www.instructables.com/IoT-AI-driven-
Yogurt-Processing-Texture-Prediction/

Author: Kutluhan Aktar

The aim of this project is to provide texture 
prediction for yogurt processing using IoT 
technology and AI. By using the XIAO ESP32C3 
development board, along with a temperature 
and humidity sensor, integrated pressure 
sensor kit, I2C weight sensor kit, and DS18B20 
waterproof temperature sensor, the project 
creator built an artif icial neural network 
model and trained it with Edge Impulse to 
predict yogurt texture without the addition of 
chemical additives. Users can remotely view 
sensor readings and control devices through 
the Blynk app. Finally, the author designed 
a durable enclosure suitable for a dairy 
environment. This project has the potential 
to help dairy product manufacturers reduce 
costs and improve product quality.

5.1.5 Web browser operated robot for gas leak detection
https://www.hackster.io/ivan-arakistain/web-browser-operated-robot-for-gas-leak-detection-
4cbe1b

Author: Ivan Arakistain

https://www.instructables.com/IoT-AI-driven-Yogurt-Processing-Texture-Prediction/
https://www.instructables.com/IoT-AI-driven-Yogurt-Processing-Texture-Prediction/
https://www.instructables.com/member/Kutluhan+Aktar/
https://www.hackster.io/ivan-arakistain/web-browser-operated-robot-for-gas-leak-detection-4cbe1b
https://www.hackster.io/ivan-arakistain/web-browser-operated-robot-for-gas-leak-detection-4cbe1b
https://www.hackster.io/ivan-arakistain


283Chapter 5: creative experiments

5.1.6 Train Controller With Seeed Studio XIAO ESP32C3
https://www.instructables.com/Train-Controller-With-Seeed-Studio-XIAO-ESP32C3/

Author: Tiago Santos

This project designs a train controller using the XIAO ESP32C3 module from Seeed Studio. The 
project is divided into a train part and a controller part. The train part uses the XIAO ESP32C3 
module to connect to the train and controls the train motor through the L293D motor driver. 
The controller part uses the Wemos D1 Mini to receive speed and direction information and 
displays the actual speed on a 0.96-inch ssd1306 screen. The controller communicates with the 
train part through Wi-Fi and an MQTT server. The project simplifies the complexity of traditional 
Lego train remote control systems and improves control efficiency.

This project repurposes an old hoverboard into a remote-controlled robot equipped with 
a hydrogen sensor for early detection of hydrogen leaks. It uses Bluetooth to connect the 
Seedstudio Xiao Ble Sense, MQ-8 gas sensor, and other devices, and uses Edge Impulse Studio 
to train a machine learning model. The robot also uses the Blues Wireless Notecard NBGL 
cellular connection technology to upload data to the cloud. With Remo.TV, it can be remotely 
operated to drive the robot and view real-time camera feeds through a browser.

https://www.instructables.com/Train-Controller-With-Seeed-Studio-XIAO-ESP32C3/ 
https://www.hackster.io/dark_storm


284 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

5.1.7 RC Car (Arduino-Based 3D Resin Printed) RC_Car_RP
https://www.hackster.io/devinnamaky/rc-car-arduino-based-3d-resin-printed-rc-car-rp-9b4dce

Author: Devin Namaky

This project is a 3D printed remote-controlled car based on Arduino Nano and Seeeduino XIAO, 
named RC_Car_RP. The project uses two standard 130 type DC motors as drive and steering, and 
the steering system uses gear transmission. The Seeeduino XIAO module is used to control the 
motor driver TB6612FNG, realizing the control of the car speed and direction. Communication 
between the remote control and the car is achieved through the nRF24L01 wireless module. 
The project is small in size, simple in 
design, easy to build, and can meet the 
remote-controlled car needs in different 
scenarios.

5.1.8 Pet Activity Tracker using XIAO BLE Sense & Edge 
Impulse

https://www.hackster.io/mithun-das/pet-activity-tracker-using-xiao-ble-
sense-edge-impulse-858d73

Author: Mithun Das

https://www.hackster.io/devinnamaky/rc-car-arduino-based-3d-resin-printed-rc-car-rp-9b4dce
https://www.hackster.io/mithun-das/pet-activity-tracker-using-xiao-ble-sense-edge-impulse-858d73
https://www.hackster.io/mithun-das/pet-activity-tracker-using-xiao-ble-sense-edge-impulse-858d73
https://www.hackster.io/mithun-das


285Chapter 5: creative experiments

This project is a wearable device that tracks pet activities using XIAO BLE Sense and Edge 
Impulse, aimed at helping our pets stay active. The XIAO BLE Sense is a mini controller equipped 
with a powerful Nordic nRF52840 MCU, built-in Bluetooth 5.0 module, and designed around a 
32-bit ARM® Cortex™-M4 CPU. It features a 6-axis IMU that can be used to predict activities such 
as rest, walking, and running.

With the accompanying smartphone app, 
users can connect to the device via Bluetooth 
and obtain minute-by-minute prediction data. 
The data is stored in the smartphone’s local 
storage and presented graphically to provide 
meaningful insights.

The project collects data via the EI Blue mobile 
app, creates machine learning models using 
Edge Impulse Studio, and builds an iOS app 
using Google Flutter. The whole system can 
monitor the pet’s activity status in real-time 
and view the data through the mobile app.

5.1.9 H.E.D.S. On your wrist, New Seeeduino XIAO Board
https://www.hackster.io/ihayri1/h-e-d-s-on-your-wrist-new-seeeduino-xiao-board-7d8f74 https://
youtu.be/ql2wnFtSQqQ

Author: Hayri Uygur

Hayri has made a Maker-style multifunctional wristwatch, H.E.D.S., using XIAO. It provides a set 
of small, handy tools with many functions and variations, and is equipped with a beautiful, sharp 
240x240 pixel IPS display.

https://www.hackster.io/ihayri1/h-e-d-s-on-your-wrist-new-seeeduino-xiao-board-7d8f74 https://youtu.be/ql2wnFtSQqQ
https://www.hackster.io/ihayri1/h-e-d-s-on-your-wrist-new-seeeduino-xiao-board-7d8f74 https://youtu.be/ql2wnFtSQqQ
https://www.thingiverse.com/Hayri


286 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

5.1.10 Hearbeat Monitor With XIAO NRF52840
https://www.instructables.com/Hearbeat-Monitor-With-XIAO-NRF52840/

Author: TiagoSantos 

This project uses a XIAO NRF52840 microcontroller, based on the Nordic nRF52840 CPU, to 
make a heartbeat monitor. This microcontroller supports Bluetooth 5.0 and NFC and has a super 
small size, making it ideal for wearable devices and other projects with limited space. The project 
uses another biomedical microcontroller called Bitalino to monitor the heartbeat. The XIAO 
NRF52840 receives information from the ECG (Electrocardiogram) sensor and then transmits 
it to a set of LEDs. Through this project, we can view the heart rate in real-time and observe the 
data of heart activity.

1. Prepare the Bluetooth version of XIAO nRF52840. Its small size is very suitable for wearable 
devices.

2. Bitalino is a biomedical kit similar to Arduino developed by Hugo Silva in Portugal. This 
project will use some modules from it. 

3. Circuit diagram: XIAO receives heart rate 
information from the ECG sensor, converts 
it, and sends it. The LED flashes with the 
heart rate, and the Arduino serial port 
plotter displays the graphical information 
of the heart rate. 

https://www.instructables.com/Hearbeat-Monitor-With-XIAO-NRF52840/
https://www.instructables.com/member/TiagoSantos/


287Chapter 5: creative experiments

4. Use a perforated board to place components 
and solder. First, place resistors and the 
female pins of XIAO, then solder the ECG 
sensor. Finally, cut the perforated board to 
the required size.

5. Use Fusion 360 to design the LED shell, the 
main shell, and the structure of the chest 
part. Use Creality Slicer to transcode and 
send it to the 3D printer to get structural 
parts.

6. When connecting the LED, use a perforated board to connect all cathodes and place a 
ground connector. After all connections are completed, it is necessary to check whether VCC 
is isolated from the ground and perform a test.

7. Not everything can go as expected. During the connection check, the fixture exerted too 
much force, causing the perforated board to break. It had to be redone.

8. Finally, it’s time to connect the battery and isolate all circuits to avoid short circuits. Usually, 
heat-shrink tubing would be used here, but if there is no suitable size, hot glue can also work.



288 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

9. Place all components on the 3D printed parts and perform a test, then use super glue to 
connect the parts. The part f ixed on the chest was pasted with an elastic band. Finally, 
replace the LED and remove the resistor to get more noticeable light effects.

10. The final effect.

5.1.11 Multi MIDI Controller, Filter, Router & Sound Generator
https://www.synthtopia.com/content/2022/03/29/multi-midi-controller-f ilter-router-sound-
generator/ https://github.com/pangrus/multi

Author: Pangrus

Multi is a multifunctional MIDI controller, primarily used for audio synthesis, with a very small 
size. Compared with the latest generation of commercial controllers, it has a USB port and two 
DIN interfaces. The Multi controller is fully programmable, allowing for some functionalities in 
a computer-free setup. In addition, it can also be used as a sound generator as it is equipped 
with a 10-bit DAC converter, making it ideal for exploring digital synthesis technology. The Multi 
controller is powered by the robust Seeeduino XIAO, featuring 6 knobs, 2 buttons, 2 Midi DIN 
interfaces, and a 1/8 inch audio interface. Its MIDI input has opto-isolation to avoid ground loops, 
complying with the official specification.

https://www.synthtopia.com/content/2022/03/29/multi-midi-controller-filter-router-sound-generator/ h
https://www.synthtopia.com/content/2022/03/29/multi-midi-controller-filter-router-sound-generator/ h


289Chapter 5: creative experiments

5.1.12 DIY eurorack modular synth Raspberry Pi VCO with 
Seeed XIAO

https://www.hackster.io/hagiwo/diy-eurorack-modular-synth-rasberry-pi-vco-with-seeed-xiao-
133ac0

Author: HAGIWO/ ハギヲ

A maker from Japan, HAGIWO / ハギヲ , used 
the Seeed XIAO RP2040 development board 
to create a Voltage-Controlled Oscillator (VCO) 
module for a Eurorack modular synthesizer. 
This  board has a Raspberry Pi  RP2040 
microcontroller, 4 AD converters, and is easier 
to use than the Raspberry Pi Pico. The VCO 
module has three modes: Wavefold, FM, and 
AM, with eight built-in waveforms, costing only 
about 1100 yen.

5.1.13 Xiao CV Sequencer
https: //www.instructables.com/Xiao-CV-
Sequencer/

Author: analogsketchbook

Using the Seeduino Xiao microcontroller and a 
few parts, a decent CV synthesizer was created, 
mainly for modular synthesizer systems. Xiao’s 
role in this project is to output Control Voltage 
(CV) signals through its analog output pins for 
passing note information between modules. It 
also controls other features such as adjusting 
speed, mode switching, and sequence selection.

https://www.hackster.io/hagiwo/diy-eurorack-modular-synth-rasberry-pi-vco-with-seeed-xiao-133ac0
https://www.hackster.io/hagiwo/diy-eurorack-modular-synth-rasberry-pi-vco-with-seeed-xiao-133ac0
https://note.com/solder_state
https://note.com/solder_state
https://www.instructables.com/Xiao-CV-Sequencer/
https://www.instructables.com/Xiao-CV-Sequencer/
https://www.instructables.com/member/analogsketchbook/


290 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

5.1.14 ANAVI Macro Pad 10 & Knobs
https://www.crowdsupply.com/anavi-technology/anavi-macro-pad-10

Author: Crowd Supply

A company has designed and manufactured three small, programmable, open-source 
mechanical input devices through crowdfunding: ANAVI Macro Pad 10 keyboard, ANAVI Knob 
3, and ANAVI Knob 1. All are driven by the powerful Raspberry Pi RP2040 microcontroller inside 
Seeed XIAO RP2040, support USB Type-C, and run the KMK firmware based on CircuitPython. 
These customizable devices are suitable for video or audio editing, entertainment broadcasting, 
gaming, programming, etc., providing precise control and practical lighting effects. They are 
simple to use, and their plans and schematics can be found on GitHub.

5.1.15 Death Stranding Desk Lamp
https://www.hackster.io/wyx269263336/death-stranding-desk-lamp-ae5f71

Author: Pinkman

This smart lamp, based on the multifunctional scanning device Odradek in 
the game Death Stranding, is made up of f ive separate light blades, each 
with three degrees of freedom, so you can adjust the desired angle at any 

time. It integrates the XIAO nRF52840 Sense Bluetooth main control board and WS2812 magic 
color light strip, and you can control its color and brightness through a mobile app.

https://www.crowdsupply.com/anavi-technology/anavi-macro-pad-10
https://www.hackster.io/wyx269263336/death-stranding-desk-lamp-ae5f71
https://www.hackster.io/wyx269263336


291Chapter 5: creative experiments

5.1.16 HackerBox 0077: Veritas
https://www.instructables.com/HackerBox-0077-Veritas/

Author: HackerBoxes

This project teaches you how to make a simple lie detector. It involves configuring the Seeeduino 
XIAO microcontroller module, modifying the OLED module to achieve dual display operation 
with a single microcontroller, assembling a Galvanic Skin Response (GSR) sensor based on an 
operational amplifier, and integrating a heart rate sensor. XIAO acts as the core controller in the 
project, realizing data collection, processing, and display.

https://www.instructables.com/HackerBox-0077-Veritas/
https://www.instructables.com/member/HackerBoxes/


292 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

5.1.17 DISCIPLINE - A workout timer
https://www.hackster.io/rw2493/discipline-a-workout-timer-6b5614

Author: Rui Wang

DISCIPLINE: This is  a homemade timer 
that helps you strictly control rest intervals 
during muscle training. The project uses 
the Seeeduino XIAO microcontroller, along 
with two buttons, a display screen, a battery, 
and other components to achieve a simple 
user interface and a portable design. XIAO is 
responsible for the core control function of the 
timer in the project, providing accurate timing 
services to users.

The design goals include:

• Small, portable, and compact

• Complete timer functions

• Simple user interface design

• Clear interaction flow

• Cool appearance

Interaction is designed to be as simple as 
possible to minimize operation steps.

Yellow and blue button light interaction description: After some playtests, I then use the 
yellow button to control the time setup, and I use the blue button to start the counting. To 
provide a good indication, I did several things for the LEDs. ( Y for Yellow, B for Blue) When 
powering it on: Y -> Fade; B -> ON, indicate to pick up a time period.

• When powering it on: Y -> Fade; B -> ON, 
indicate to pick up a time period.

Press Y to switch timing options: 30s, 60s, 90s, 
120s.

• Press Y to switch timing options: 30s, 60s, 
90s, 120s.

Press B to confirm your choice, the timer starts 
counting down. Y -> OFF; B -> OFF.

• Press B to confirm your choice, the timer 
starts counting down. Y -> OFF; B -> OFF.

Timer ends counting, B -> ON; Y -> OFF forever.

• Timer ends counting, B -> ON; Y -> OFF 
forever.

Two finger operation: The final design choice 
was to allow users to hold it easily with one 
hand and operate it with two fingers.

https://www.hackster.io/rw2493/discipline-a-workout-timer-6b5614
https://www.hackster.io/rw2493


293Chapter 5: creative experiments

Magnetic Attachment: After analyzing pain points, it was decided to use magnets to attach the 
product to places where interaction and operation are more easily realized.



294 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

Purple Owl | a 60% keyboard powered 
by Seeed XIAO RP2040

h t t p s : / / w w w . h a c k s t e r . i o /
sonalpinto/purple-owl-a-60-
keyboard-powered-by-seeed-
xiao-rp2040-f73604

 Author: Sonal Pinto

5.1.18 Seeed Fusion DIY XIAO Mecha
https://www.seeedstudio.com/seeed-fusion-diy-xiao-mechanical-keyboard-contest.html

XIAO 的小巧尺寸与其强悍的性能，没想到在 DIY 键盘与控制器玩家中得到认可，为此 Seeed 在 2022 年 7 月至
10 月，组织了一次 Fusion XIAO 机器键盘大赛，下面我们展示了此次比赛的一些获奖项目，以帮助对 DIY 键盘
有兴趣的读者。

1st Prize: 

TOTEM | a tiny splitkeyboard with splay

(2x)19 key ergo split: 3-key thumb cluster, pinky splay, low profile. Useful repo and classy, unique 
case. Nicely documented and open source. And it’s a usable keyboard, which could be used as a 
daily driver. Other than that, Marc took a great effort to present his design aesthetically

https://www.hackster.io/geist/totem-a-tiny-splitkeyboard-with-splay-cb2e43

Author: Marc Rühl

2nd Prize: 

Beyblock20 | a magnetic, modular 
MacroPad
https://github.com/ChrisChrisLoLo/beyblock20

Author: Christian Lo

https://www.hackster.io/sonalpinto/purple-owl-a-60-keyboard-powered-by-seeed-xiao-rp2040-f73604
https://www.hackster.io/sonalpinto/purple-owl-a-60-keyboard-powered-by-seeed-xiao-rp2040-f73604
https://www.hackster.io/sonalpinto/purple-owl-a-60-keyboard-powered-by-seeed-xiao-rp2040-f73604
https://www.hackster.io/sonalpinto/purple-owl-a-60-keyboard-powered-by-seeed-xiao-rp2040-f73604
https://www.seeedstudio.com/seeed-fusion-diy-xiao-mechanical-keyboard-contest.html
https://www.seeedstudio.com/seeed-fusion-diy-xiao-mechanical-keyboard-contest.html
https://www.hackster.io/geist/totem-a-tiny-splitkeyboard-with-splay-cb2e43
https://github.com/ChrisChrisLoLo/beyblock20


295Chapter 5: creative experiments

GRIN Quern | an ergonomic keyboard 
on center trackpad

https://www.hackster.io/policium/
grin-quern-ergonomic-keyboard-
on-center-trackpad-8b58c3

Author: policium

3rd Prize: 

KLEIN | a wireless ergonomical 

keyboard

https://www.hackster.io/nosnk/
klein-a-wireless-ergonomical-
keyboard-b4cd9a

Author: Shashank

Kidoairaku Swallowtail | a cute 
butterfly-shaped keyboard

Author: yswallow

https://www.hackster.io/policium/grin-quern-ergonomic-keyboard-on-center-trackpad-8b58c3
https://www.hackster.io/policium/grin-quern-ergonomic-keyboard-on-center-trackpad-8b58c3
https://www.hackster.io/policium/grin-quern-ergonomic-keyboard-on-center-trackpad-8b58c3
https://www.hackster.io/nosnk/klein-a-wireless-ergonomical-keyboard-b4cd9a
https://www.hackster.io/nosnk/klein-a-wireless-ergonomical-keyboard-b4cd9a
https://www.hackster.io/nosnk/klein-a-wireless-ergonomical-keyboard-b4cd9a


296 XIAO: Big Power, Small Board - Mastering Arduino and TinyML

About the authors
Lei Feng is the leader of the technical support group and product curriculum at Seeed Studio. 
An experienced author in the f ields of open-source hardware and edge computing, he has 
published several books in China, including “GameGo Beginner Programming Course for 
Arcade 《做游戏，玩编程——零基础开发微软 Arcade 掌机游戏》,” “Grove Beginner Kit For Arduino 
- Codecraft Graphical Programming Course 《 Arduino 图 形 化 编 程 轻 松 学》”, and the Chinese 
translation of “IoT for Beginners 《深入浅出 IoT：完整项目通关实战》” with support from Microsoft 
China.

Lei Feng has created numerous tutorials and open-source documentation in Chinese 
and English with his team. His hands-on experience developing IoT and edge computing 
projects gives him unique insights into simplifying complex concepts for beginners. As an 
engaging writer and patient teacher, Lei Feng is the ideal guide to make Arduino and TinyML 
approachable for newcomers worldwide.

LinkedIn profile: https://www.linkedin.com/in/leon-feng-a029bb1/

Marcelo Rovai is a recognized figure in engineering and technology education, holding the 
title of Professor Honoris Causa from the Federal University of Itajubá, Brazil. His educational 
background includes an Engineering degree from UNIFEI and an advanced specialization from 
the Polytechnic School of São Paulo University. Further enhancing his expertise, he earned an 
MBA from IBMEC (INSPER) and a Master’s in Data Science from the Universidad del Desarrollo 
in Chile.

With a career spanning several high-profile technology companies such as AVIBRAS Airspace, 
ATT, NCR, and IGT, where he served as Vice President for Latin America, he brings a wealth of 
industry experience to his academic endeavors. He is a prolif ic writer on electronics-related 
topics and shares his knowledge through open platforms like Hackster.io.

In addition to his professional pursuits, he is dedicated to educational outreach, serving as a 
volunteer professor at UNIFEI and engaging with the TinyML4D group as a Co-Chair, promoting 
TinyML education in developing countries. His work underscores a commitment to leveraging 
technology for societal advancement.

LinkedIn profile: https://www.linkedin.com/in/marcelo-jose-rovai-brazil-chile/

https://www.linkedin.com/in/leon-feng-a029bb1/
https://www.linkedin.com/in/marcelo-jose-rovai-brazil-chile/

	Preface
	Acknowledgments
	Introduction
	About this Book

	Chapter 1: 
Introduction to Hardware and Programming
	1.1
First Arduino program with Seeed Studio XIAO: Blink
	1.2
Using the Button Switch on the XIAO Expansion Board to Control an LED Light
	1.3
Transforming XIAO and its Expansion Board into a Morse Code Transmitter
	1.4
Monitor Knob Value Changes with Serial Monitor
	1.5
Controlling LED and Servo with a Knob
	1.6 
Displaying "Hello World" on OLED

	Chapter 2: 
Project Practice for Beginners - Introduction to Prototype 
Design
	2.1 
Introduction to Product Prototype Design
	2.2
Smart Hygrometer and Thermometer
	2.1 
Surprise Gift Box Based on Light Sensor
	2.4
Rhythmic Dance with a Triaxial Accelerometer

	Chapter 3: 
Intermediate Project Practice - Complex Projects
	3.1 
Smart Remote Control Door
	3.1 
Smart Watch
	3.3
Air Piano
	3.4
Implementing Wi-Fi Connection and Applications with XIAO ESP32C3
	3.5
Telemetry and Commands using the MQTT protocol with XIAO ESP32C3

	Chapter 4: 
Project Practice Advanced - TinyML Applications
	4.1 
	Understanding TinyML and Edge Impulse Studio
	4.2
Anomaly Detection & Motion Classification
	4.3
Sound Classification (KWS)
	4.4
Image Classification
	4.5
Object Detection
	4.5
To learn more

	Chapter 5: 
Creative Experiments
	5.1
Creative and useful XIAO projects


