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1. INTRODUCTION

This report details the development of a custom web interface designed for classifying unhealthy
plants. The process leverages machine learning, edge systems, and computer vision principles. The
application development process included several key stages: goal setting to define the project's
objectives and scope, dataset acquisition, labeling to annotate the acquired data for model training,
pre-processing to clean and transform the data, model training to develop and optimize the Al model,
rigorous testing to evaluate its performance and accuracy, and final deployment to make the application
available for use. The goal is to distinguish between healthy and bacteria-degraded plant leaves using
custom plant datasets.

2. DATASET ACQUISITION AND LABELING

The custom dataset used on the project was the free to use PlantVillage Dataset [Picture 1],
containing a considerative amount of leaf images split between healthy, unhealthy and the kind of leaf.
After downloading the dataset, we uploaded to Roboflow to do the labeling process, the pictures were
labeled into two classes “Healthy-Leaf” and “Bacteria-Leaf”, after that, they were split into 70% to train,
20% to valid and 10% to test. The preprocesses applied were auto-orientation and resizing the pictures to
320x320. We also added a few augmentations that increased the final number of the dataset images. The
augmentations were: flip vertically and horizontally the pics, cropping with a 20% maximum zoom,
rotation between -15° and +15°, changing the brightness between -15% and +15% and also the exposure
between -10% and +10%. The total of images was 14190.
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Picture 1: PlantVillage Dataset.
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Picture 2: Roboflow final dataset.



3. TRAINING THE MODEL

To get a more reliable, efficient and light model, we choose to use the Ultralytics YOLOV8&n
model. The training process was entirely made into a Google Collab Notebook with command lines. The
notebook ran with the Nvidia T4 free GPU, ultralytics was installed using the PIP method, and the dataset
was extracted from Roboflow. The image size chosen to classify the images was 224x244, and due to the
amount of dataset images the epochs chosen were 25, the total time of training was about 34 minutes. The

results of training were pretty good, 0.99 of accuracy for the best model.
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Picture 3: Final model trained.

The metrics generated by the model were also excellent. The confusion matrix [Picture 4] and the

results graphics [Picture 5] exemplifies them.
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Picture 4: Confusion Matrix. Picture 5: Graphic of the results.

Into the /runs/classify/train/weights the model files were saved (“last.pt” and “best.pt”), the chosen
one was the “best.pt”. Before downloading it, we validated the model to check if the predictions were

coherent with the results shown.



4. TESTING THE MODEL

Before developing the web application we tested the model in the Raspberry Pi Zero 2W to check
if the results were going to be great and if the time inferences were going to be reasonable. We ran the
model into a Jupyter Notebook and selected some pictures to make the predictions [Picture 6].
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Picture 6: Model testing in Jupyter Notebook.

5. WEB APPLICATION DEVELOPMENT

5.1. GENERAL DESCRIPTION

This project is a complete web application developed with the Flask framework, designed for
plant health classification through both image uploads and real-time analysis using the Raspberry Pi
camera. The system employs a pretrained YOLO deep learning model (plants healthy bacteria.pt)
capable of identifying whether a plant appears healthy or affected by a bacterial condition. When an
image is submitted or captured, the application processes it through the model and returns both the
predicted class label and the associated confidence level. The result is then displayed on a clean and
user-friendly web interface, providing a smooth integration between artificial intelligence and web-based
visualization.

5.2. APP.PY (BACK-END)

The app.py file serves as the core of the application, handling all backend operations and data
flow. It is responsible for initializing the Flask environment, managing the upload directory, loading the
YOLO model, and configuring the Raspberry Pi camera using the Picamera2 library. Through this script,
the system processes user-submitted images or live frames, runs the Al inference, and returns the results
to the web interface. It also handles real-time MJPEG video streaming, allowing users to visualize the
camera feed directly in the browser.

The application uses multiple threads to ensure that the frame capturing and model inference
occur simultaneously without affecting performance or responsiveness. This design allows for continuous
frame analysis in the background, while the web interface remains interactive and responsive to user
inputs. The main routes defined in the Flask app include the homepage for image uploads, the real-time
classification page, the video feed stream, a route that provides the latest classification label in JSON



format for asynchronous updates, and a stop command that halts the live analysis and redirects users back
to the initial page.

5.3. INDEX.HTML (FRONT-END - IMAGE UPLOAD)

The index.html file represents the main web interface for uploading images and viewing
classification results. Users can select an image from their local device and submit it through a simple and
intuitive form. Once processed, the page dynamically displays the predicted class (for example, “Healthy”
or “Bacterial Infection”) and the corresponding confidence percentage. This functionality is powered by
Flask’s Jinja2 templating engine, which allows the server to pass data directly into the HTML structure.

The design of this page relies on Bootstrap 5, ensuring a responsive layout that adjusts well to
different screen sizes. Additionally, the interface provides access to the real-time classification mode
through a clearly visible button, creating a seamless transition between static image analysis and live
monitoring. Error messages are displayed in a user-friendly way, ensuring that users receive immediate
feedback in cases of invalid files or failed uploads.

54. REALTIME.HTML (FRONT-END - REAL-TIME CLASSIFICATION)

The realtime.html file is designed specifically for real-time plant health monitoring using the
Raspberry Pi camera. It is divided into two main sections: a live video stream showing the camera feed
and a classification box that displays the most recent prediction and confidence level. The data in this box
is automatically refreshed every half-second through a lightweight JavaScript script that sends
asynchronous requests to the server’s /get label endpoint.

This constant communication between client and server allows the classification status to update
continuously without requiring a page reload, creating an efficient and interactive user experience. The
layout uses soft colors and rounded elements, evoking a natural aesthetic that matches the theme of plant
health and environmental care. The user can stop the real-time monitoring at any moment and return to
the main page with a single click, ensuring ease of navigation and control.

5.5. STYLE.CSS (VISUAL STYLE)

The visual design of the project is defined in the style.css file, which establishes the aesthetic
identity of the web interface. The background features a smooth green gradient, symbolizing the natural
context of the application. Containers and images use rounded corners and soft shadows to convey a sense
of modernity and lightness. Buttons are styled with transition effects that enhance interactivity,
distinguishing primary actions such as “Upload” from secondary ones like “Back” or “Real-time Mode.”
The chosen typography, “Segoe UL” contributes to a clean and professional appearance, ensuring that the
interface remains readable and visually balanced.

Overall, the design reflects the project’s ecological inspiration while maintaining clarity and
simplicity, creating a visually pleasant and intuitive user environment.



6. CONCLUSION

In summary, this project successfully merges artificial intelligence and web development into a
complete system for plant health analysis. By combining static image processing with real-time video
classification, it demonstrates the versatility of computer vision applications in agriculture and
environmental monitoring. The modular design, efficient use of threads, and user-friendly interface make
the platform both technically sound and accessible. It serves as a practical example of how machine
learning models can be integrated into web-based tools to provide immediate, actionable insights in
real-world contexts.

GitHub project link:
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