

UNIVERSIDADE FEDERAL DE ITAJUBÁ

FRUIT QUALITY ASSESSMENTS MACHINE LEARNING ENGINEERING

ALEX ALVAREZ DUQUE - 2024005730 ARTUR GOMES SIMÃO - 2024006513 PEDRO LUCAS PEREIRA FERREIRA - 2024005982 IESTI-UNIFEI

SUMÁRIO

1. RESUMO	3
2. INTRODUÇÃO	4
3. REVISÃO BIBLIOGRÁFICA	
3.1. CONCEITOS BÁSICOS	5
3.2. TRABALHOS RELACIONADOS E APLICAÇÕES PRÁTICAS	5
4. METODOLOGIA	
4.1. ESCOPO DO PROJETO	
4.2. COLETA E PREPARAÇÃO DE DADOS	
4.3. MODELOS E ARQUITETURAS	
4.4. OTIMIZAÇÃO PARA O DISPOSITIVO	8
4.5. FERRAMENTAS E AMBIENTE	9
5. IMPLEMENTAÇÃO	10
5.1. INSTALAÇÃO	
5.2. ESTRUTURA GERAL DO SISTEMA	10
5.3. FLUXO DE EXECUÇÃO	10
6. AVALIAÇÃO DE DESEMPENHO	
6.1. MÉTRICAS UTILIZADAS	
6.2. TESTES NO RASPBERRY ZERO PI	12
6.3. TESTES NO RASPBERRY ZERO PI	13
6.4. DISCUSSÃO DOS RESULTADOS	13
7. CONCLUSÃO	15
7.1. CONCLUSÃO GERAL	15
7.2. DIFICULDADES ENCONTRADAS	
7.3. MELHORIAS FUTURAS	15
8. REFERÊNCIAS	17

1. RESUMO

Um sistema inteligente de classificação de frutas e vegetais foi desenvolvido com o objetivo de identificar automaticamente o estado de conservação dos alimentos como verde, maduro ou estragado, utilizando técnicas de aprendizado de máquina. A solução foi projetada para rodar em tempo real em dispositivos de baixo custo, como o Raspberry Pi Zero 2W, promovendo automação acessível e eficiente na triagem de alimentos.

O modelo escolhido foi o MobileNetV2, quantizado para int8 e otimizado com TensorFlow Lite, garantindo baixo consumo de memória e alta velocidade de inferência (5 ms). A base de dados foi composta por imagens públicas e próprias, abrangendo cinco frutas: maçã, banana, manga, laranja e tomate. O sistema alcançou acurácia de 82,5% e AUC de 0,98, com desempenho robusto mesmo em condições de hardware limitadas.

A aplicação inclui captura de imagem, pré-processamento, inferência e exibição dos resultados via interface web. Os testes demonstraram alta precisão para frutas frescas e estragadas, com desempenho ligeiramente inferior para frutas verdes, devido à variabilidade visual. A proposta se mostra promissora para aplicações em agricultura inteligente, controle de qualidade e redução de desperdícios na cadeia alimentar.

O repositório do projeto pode ser encontrado no github utilizando o link: https://github.com/12FlyBreads/fruit-quality-assessment.git .

3

2. INTRODUÇÃO

Este projeto tem como foco o desenvolvimento de um sistema inteligente de avaliação visual para a classificação de frutas e vegetais (maçã, banana, manga, laranja e tomate) quanto ao seu estado de conservação - frescas, maduras ou podres. A proposta visa automatizar o processo de triagem de frutas por meio de técnicas de aprendizado de máquina embarcadas em dispositivos de baixo custo, tais como o Raspberry Pi Zero, promovendo maior eficiência e padronização na separação desses alimentos.

A avaliação da qualidade das frutas e vegetais é uma etapa fundamental na cadeia de produção e distribuição de alimentos, influenciando diretamente a experiência do consumidor, a gestão dos estoques e a redução de desperdícios. Métodos tradicionais, como a inspeção visual manual, apresentam limitações significativas, incluindo subjetividade, inconsistência entre operadores e elevado consumo de tempo. Esses fatores comprometem a confiabilidade do processo e dificultam sua escalabilidade. Segundo a Organização das Nações Unidas para Agricultura e Alimentação (FAO), cerca de 45% das frutas e hortaliças produzidas globalmente são perdidas ou desperdiçadas antes de chegar ao consumidor final. Grande parte dessas perdas ocorre durante as etapas de pós-colheita, transporte e comercialização, onde a falta de sistemas precisos de avaliação de qualidade contribui para o descarte prematuro de alimentos que ainda poderiam ser aproveitados.

Diante desse cenário, torna-se evidente a necessidade de soluções tecnológicas capazes de aprimorar os processos de triagem e classificação de frutas e vegetais, especialmente em ambientes com recursos limitados. A adoção de sistemas inteligentes de avaliação visual, baseados em aprendizado de máquina e embarcados em plataformas de baixo custo, representa uma alternativa promissora para reduzir perdas, aumentar a eficiência operacional e garantir maior padronização na seleção de alimentos. O desenvolvimento de uma solução com essas características contribuem diretamente para a modernização da cadeia produtiva e para a promoção de práticas mais sustentáveis no setor alimentício.

Um exemplo prático dessa melhoria é a redução do descarte de frutas e vegetais em centros de distribuição, onde produtos com pequenas imperfeições visuais costumam ser rejeitados, mesmo estando próprios para consumo. Com a aplicação de sistemas inteligentes de avaliação visual, é possível realizar uma triagem mais precisa e padronizada, aproveitando melhor os alimentos e contribuindo para a redução do desperdício.

3. REVISÃO BIBLIOGRÁFICA

3.1. CONCEITOS BÁSICOS

O Machine Learning (Aprendizado de Máquina) é uma área da inteligência artificial que permite que sistemas computacionais aprendam padrões a partir de dados, sem a necessidade de programação explícita para a execução de tarefas específicas. Esse processo envolve a coleta de dados, o treinamento do modelo com os dados coletados, a validação ou teste do modelo para avaliar seu desempenho e, por fim, a aplicação em novos dados para realizar previsões ou classificações. Um exemplo de aplicação é o sistema de filtragem de e-mails, no qual algoritmos aprendem a identificar mensagens de spam analisando padrões presentes em mensagens anteriores.

Dentro do Machine Learning, o Deep Learning (Aprendizado Profundo) é uma subárea que utiliza redes neurais profundas para extrair e aprender automaticamente características complexas de grandes volumes de dados. Diferentemente do aprendizado tradicional, o Deep Learning dispensa a engenharia manual de características, uma vez que a própria rede identifica padrões relevantes. Entretanto, redes profundas requerem considerável poder computacional e grandes quantidades de dados para seu treinamento eficiente. Entre suas aplicações destacam-se o reconhecimento de voz, a tradução automática e a detecção de objetos em imagens.

As Redes Neurais Convolucionais (Convolutional Neural Networks – CNNs) são um tipo específico de rede neural projetada para processar dados com estrutura espacial, como imagens e vídeos. As CNNs realizam a extração de características de forma hierárquica, sendo compostas por camadas convolucionais, que extraem padrões locais como bordas, texturas e formas; camadas de pooling, que reduzem a dimensionalidade preservando informações relevantes; e camadas totalmente conectadas, que realizam a decisão final, como a classificação da imagem. As CNNs são amplamente utilizadas em tarefas de visão computacional, incluindo classificação de imagens, reconhecimento facial e detecção de objetos.

No contexto de análise de imagens, é importante diferenciar classificação e detecção de objetos. A classificação consiste em determinar o conteúdo predominante de uma imagem, atribuindo-lhe uma ou mais classes correspondentes. Por exemplo, uma fotografia contendo um cachorro será identificada apenas como pertencente à classe "cachorro". Já a detecção de objetos envolve não apenas identificar o que está presente na imagem, mas também determinar a localização exata de cada objeto, geralmente representada por caixas delimitadoras. Em uma fotografia com dois cachorros e um gato, o modelo identifica cada animal individualmente, atribuindo a cada um a classe correspondente e sua posição na imagem.

3.2. TRABALHOS RELACIONADOS E APLICAÇÕES PRÁTICAS

A avaliação da qualidade e o monitoramento da maturação de frutas têm recebido crescente atenção na literatura científica, em função da importância desses processos para a redução de perdas pós-colheita e para a melhoria da produtividade agrícola. Diversos estudos demonstram a aplicação de tecnologias emergentes, incluindo Internet das Coisas (IoT), aprendizado profundo e sistemas de visão computacional, associadas a práticas de manejo agrícola.

Um estudo recente propôs um sistema de IoT para monitoramento da maturação de frutas, integrando sensores de luz e sensores de gás etileno. Os sensores de luz capturam alterações na coloração e pigmentação das frutas, enquanto os sensores de etileno monitoram a produção deste hormônio, diretamente associado ao processo de amadurecimento. Os dados obtidos são

processados por meio de uma rede neural do tipo multilayer perceptron, permitindo prever com precisão o estágio de maturação. Essa abordagem possibilita decisões mais assertivas quanto ao armazenamento e à distribuição dos frutos, contribuindo para a redução de perdas e a otimização da cadeia produtiva.

Em paralelo, a utilização de modelos de visão computacional em tempo real tem se mostrado eficaz na classificação da qualidade de frutas. Um estudo aplicou a arquitetura YOLO (You Only Look Once), combinada a máquinas de vetor de suporte (SVM), para a classificação de laranjas. O modelo YOLO foi empregado na identificação de características visuais das frutas, enquanto o SVM realizava a classificação da qualidade. Os resultados indicaram que o YOLO apresentou desempenho superior em termos de precisão e velocidade de processamento, demonstrando a aplicabilidade de soluções de aprendizado profundo para avaliação automatizada de frutas em ambientes de produção agrícola.

Além das abordagens tecnológicas, a literatura destaca a importância do manejo adequado e do conhecimento técnico para a produção de frutas de alta qualidade. A publicação da Embrapa intitulada "Pequenas Frutas: o produtor pergunta, a Embrapa responde" apresenta informações abrangentes sobre cultivares, condições climáticas, práticas de manejo, controle de pragas e doenças, e estratégias de pós-colheita para pequenas frutas, como morango, mirtilo, amora-preta, framboesa, physalis e uva muscadínia. Este trabalho reforça a necessidade de integrar tecnologias de monitoramento com práticas agrícolas sustentáveis, garantindo a melhoria da produtividade e a preservação da qualidade dos frutos.

Em síntese, os estudos analisados evidenciam que a convergência entre IoT, redes neurais, visão computacional em tempo real e manejo agrícola representa uma estratégia eficiente para monitoramento e avaliação da qualidade de frutas, promovendo decisões mais assertivas, redução de perdas e aumento da eficiência na cadeia produtiva agrícola.

4. METODOLOGIA

4.1. ESCOPO DO PROJETO

O projeto tem como objetivo principal desenvolver um sistema baseado em aprendizado de máquina capaz de avaliar a qualidade de frutas e vegetais (maçã 'apple', banana, laranja 'orange', manga 'mango' e tomate 'tomato') por meio de inferência em tempo real de imagens de uma câmera.

A tarefa definida consiste em classificar o tipo da fruta ou vegetal (de maneira individual) e seu estado de maturação ou conservação do alimento em três classes principais: unripe (verde / imaturo), ripe (maduro) e rotten (estragado). A partir dessa avaliação, uma estimativa de tempo de vida da fruta ou vegetal também deve ser informada na aplicação.

A escolha por este problema se deve à sua relevância prática no contexto de agricultura de precisão, controle de qualidade e redução de desperdício de alimentos, além de se tratar de um desafio adequado para um ambiente de processamento limitado, como o Raspberry Pi Zero 2W.

O sistema busca demonstrar que modelos de visão computacional compactos podem ser aplicados com bom desempenho em dispositivos de borda, mantendo precisão e velocidade adequadas.

4.2. COLETA E PREPARAÇÃO DE DADOS

Para o treinamento e validação do modelo, foram utilizadas imagens provenientes de datasets públicos, complementados por imagens capturadas pela equipe e imagens encontradas na web.

Os principais conjuntos de dados públicos considerados foram:

- **Kaggle Fruits-360 Dataset**: ampla base de imagens de frutas e vegetais com alta diversidade de classes.
- **Kaggle Fruit Ripeness Dataset**: base contendo frutas em diferentes estágios de maturação (unripe, ripe, overripe).
- Roboflow Custom Ripeness Datasets: datasets com rótulos e formatos prontos para integração com YOLO/TensorFlow.

As imagens foram organizadas em pastas correspondentes a cada classe e divididas em três subconjuntos: 80% para treino e 20% para validação e teste, seguindo boas práticas de generalização de modelos.

O pipeline de preparação de dados envolveu as seguintes etapas:

- **Redimensionamento**: todas as imagens foram redimensionadas para uma resolução reduzida de 160x160 pixels, a fim de compatibilizar com as limitações do hardware.
- **Data Augmentation**: antes do treinamento do modelo da inteligência artificial, uma série de Data Augmentation foi aplicada nas imagens por meio do módulo do Roboflow. As augmentation escolhidas foram: Rotation, Shear, Saturation, Brightness e Exposure.

O dataset completo pode ser visualizado por meio do Roboflow, usando o seguinte link: https://universe.roboflow.com/pencil-versus-scissors-teste/fruits-verification-thwfx.

Essas etapas foram realizadas utilizando o módulo do Edge Impulse e ferramentas complementares de processamento de imagem.

4.3. MODELOS E ARQUITETURAS

Para o treinamento e avaliação, foram considerados modelos leves e otimizados para inferência em dispositivos embarcados, buscando um equilíbrio entre desempenho e precisão.

Os modelos analisados foram:

- MobileNetV2: arquitetura eficiente, com baixo número de parâmetros e amplamente utilizada em aplicações de edge computing.
- EfficientNet-Lite: variação otimizada da EfficientNet para dispositivos móveis, com bom custo-benefício entre velocidade e acurácia.
- YOLOv8-Nano (Ultralytics): modelo de detecção leve, avaliado em experimentos preliminares para identificar múltiplas frutas em uma mesma imagem.

Após testes iniciais, o modelo MobileNetV2 foi escolhido como base principal devido à sua facilidade de quantização, compatibilidade com TensorFlow Lite e bom desempenho em classificações de pequena escala.

A estrutura da rede utilizada é composta por camadas convolucionais profundas seguidas de blocos depthwise separable convolutions, reduzindo a complexidade computacional. A camada final é composta por uma ativação Softmax, responsável por indicar a probabilidade de cada classe de maturação.

Dessa forma, o modelo foi treinado com a base MobileNetV2, com 200 épocas de treinamento, um batch size de 32, learning rate de 0.0001 e aproximadamente 5000 imagens no dataset.

4.4. OTIMIZAÇÃO PARA O DISPOSITIVO

Com o modelo treinado e validado, a etapa seguinte consistiu na otimização para execução em tempo real no Raspberry Pi Zero 2W, cuja capacidade de processamento e memória é limitada. Foram aplicadas as seguintes técnicas:

- Quantização: conversão do modelo de precisão float32 para int8, por meio de post-training quantization utilizando o TensorFlow Lite Converter. Essa técnica reduziu significativamente o tamanho do modelo e aumentou a velocidade de inferência, com perda mínima de acurácia.
- Redução de resolução: testes foram realizados com entradas 160x160 pixels, avaliando o impacto no desempenho e na qualidade da predição.
- **Conversão final**: o modelo otimizado foi exportado para o formato .lite, possibilitando sua execução no ambiente embarcado utilizando o interpretador TensorFlow Lite Runtime.

Essas otimizações permitiram alcançar uma execução fluida, com taxa de processamento superior a 0.5 FPS, atendendo aos requisitos mínimos de desempenho definidos pelo projeto.

4.5. FERRAMENTAS E AMBIENTE

O desenvolvimento e treinamento do sistema foram realizados com base em um conjunto de ferramentas modernas de aprendizado de máquina e visão computacional.

Frameworks utilizados:

- TensorFlow Lite: para otimização e inferência no dispositivo final.
- OpenCV e Pillow (PIL): para captura, leitura e pré-processamento de imagens.

Hardware:

- Raspberry Pi Zero 2W, equipado com processador Quad-Core 1GHz e 512 MB de RAM, utilizado como plataforma de inferência.
- Câmera Raspberry Pi v2 (8 MP), empregada na captura de imagens em tempo real.

Ambientes de desenvolvimento:

- VSCode: ambiente de programação principal.
- Edge Impulse: plataforma utilizada para coleta, processamento, anotação e conversão do dataset, além de possibilitar o gerenciamento de modelos e experimentos para dispositivos embarcados.
- **GitHub:** repositório utilizado para controle de versão, colaboração em equipe e armazenamento do código-fonte, garantindo rastreabilidade das alterações e integração contínua entre os membros do projeto.

A integração entre essas ferramentas garantiu uma pipeline contínua desde o treinamento em nuvem até a implantação do modelo no dispositivo de borda.

5. IMPLEMENTAÇÃO

5.1. INSTALAÇÃO

A instalação do sistema é realizada de forma automatizada por meio de um script Bash (setup.sh), que cria o ambiente virtual, instala as dependências necessárias e prepara o modelo para execução. O passo a passo de instalação está disponível no repositório do GitHub do projeto: https://github.com/12FlyBreads/fruit-quality-assessment.git.

Além disso, são necessários pré-requisitos como Python 3.9+, um computador de bordo com LINUX e um módulo de câmera na Raspberry Pi.

Caso a instalação por meio do script dê algum erro, é recomendado fazer a criação do ambiente virtual e instalação das bibliotécas de forma manual. Os comandos são o seguinte:

- python3 -m venv .fnvq-env –system-packages : criar ambiente virtual
- source .fnvq-env/bin/activate : ativar ambiente virtual
- pip install <nome-do-pacote> : para instalar cada biblioteca utilizada

É importante salientar também que o computador de bordo deve estar atualizado préviamente.

5.2. ESTRUTURA GERAL DO SISTEMA

O sistema segue uma arquitetura modular, onde cada componente desempenha uma função específica, garantindo escalabilidade e manutenção facilitada. As etapas da aplicação ocorrem da seguinte forma:

- Captura da câmera: a captura de frames pela camera é realizada pela função 'camera.py' com o auxilio de bibliotecas como PIL e OpenCV, além da biblioteca da câmera nativa da Raspberry Zero Pi 2W (PiCam);
- Pre-processamento: O pré-processamento das imagens capturadas pela câmera são redimensionadas e normalizadas na função 'classification.py', que também desempenha outras funções muito importantes como a classificação e etiquetação do frame de exibição;
- Inferência: a inferência de classificação em tempo real é desempenhada pelo modelo de classificação localizado na pasta 'models/' do projeto por meio da função de classificação do 'classification.py';
- Display/Output: o display de stream de camêra é realizado por meio de uma interface web, utilizando o Flask, por meio da função 'app.py' (função que liga todos os pontos da aplicação); já o output de descrição da classificação é gerado por meio de uma função no 'fruit info.py' onde está localizado o database sobre as frutas utilizadas no projeto.

Cada etapa é executada em sequência dentro do código principal (app.py), utilizando módulos dedicados localizados na pasta src/.

5.3. FLUXO DE EXECUÇÃO

O fluxo principal do sistema ocorre da seguinte forma:

- Inicialização dos módulos:
 - o Carregamento do modelo TFLite e das bibliotecas.
 - o Inicialização das classes auxiliares.

- Verificação da câmera e inicialização do stream de vídeo.
- Captura da imagem:
 - Uma imagem é capturada via Picamera2.
 - O frame é convertido para o formato RGB e redimensionado para o tamanho de entrada da rede 640x480 (pode ser alterado no 'utils.py').
- Pré-processamento:
 - Normalização dos pixels.
 - Redimensionamento para corresponder à entrada do modelo (160x160 px).
- Inferência com modelo TFLite:
 - O modelo quantizado (.lite) é carregado via tflite runtime.Interpreter.
 - o A imagem é passada para o tensor de entrada e o resultado inferido.
 - O modelo retorna a probabilidade de cada classe: fruta + qualidade.
- Exibição dos resultados:
 - Caso o Flask esteja habilitado, uma interface web local exibe o status de qualidade e o tempo de vida útil estimado.

É novamente importante salientar que no modelo criado por esse projeto, as frutas e vegetais selecionados para funcionar na inteligência artificial foram: maça, banana, manga, tomate e laranja.

6. AVALIAÇÃO DE DESEMPENHO

6.1. MÉTRICAS UTILIZADAS

A avaliação do modelo foi conduzida com base nas métricas clássicas de classificação como accuracy, precision, recall e F1-score, além de indicadores de desempenho embarcado, como tempo de inferência, uso de memória e uso de flash.

Essas métricas permitem analisar não apenas a eficácia da classificação, mas também a eficiência operacional em dispositivos de borda.

A seguir está uma imagem retirada do Edge Impulse sobre o desempenho do modelo:

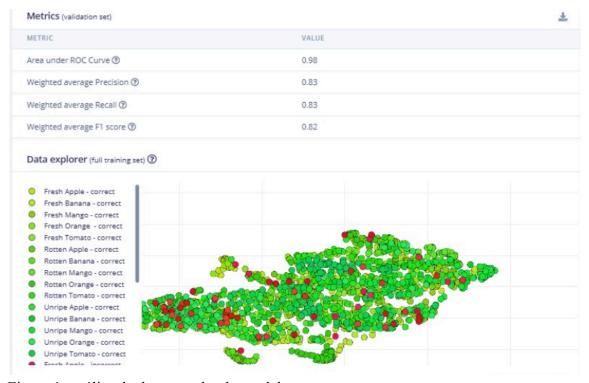


Figura 1: análise de desempenho do modelo.

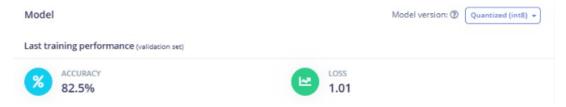


Figura 2: precisão e perda do modelo treinado.

Em geral, o modelo apresentou um bom equilíbrio entre precisão e recall, indicando uma boa capacidade de generalização entre diferentes classes de frutas e estágios de maturação.

6.2. TESTES NO RASPBERRY ZERO PI

O modelo quantizado (ei-fruits-detector-classifier-tensorflow-lite-int8) foi executado no Raspberry Pi Zero 2W, utilizando o runtime TensorFlow Lite (tflite-runtime). A seguir está uma captura de tela sobre os resultados de inferência:

Figura 3: performance no dispositivo de bordo.

Esses resultados indicam excelente eficiência computacional, especialmente considerando o hardware de baixo consumo. O modelo é capaz de realizar inferenciações praticamente em tempo real, com consumo mínimo de memória.

6.3. TESTES NO RASPBERRY ZERO PI

A matriz de confusão do conjunto de validação mostra o desempenho detalhado entre classes de frutas e estados de maturação. A figura a seguir mostra o gráfico de confusão gerado pelo treinamento no Edge Impulse:

	FRESH A	FRESH E	FRESH 1	FRESH (FRESH 1	ROTTEN	ROTTEN	ROTTEN	ROTTEN	ROTTEN	UNRIPE	UNRIPE	UNRIPE	UNRIPE	UNRIPE
FRESH APPLE	87.3%	0%	0%	1.3%	1.3%	2.5%	1.3%	0%	3.8%	2.5%	0%	0%	0%	0%	0%
FRESH BANA!	0%	91.8%	0%	8.2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
FRESH MANG	0%	2.0%	92.2%	0%	0%	0%	0%	5.9%	0%	0%	0%	0%	0%	0%	0%
FRESH ORANI	1.9%	1.9%	0%	83.0%	1.9%	0%	1.9%	0%	5.7%	0%	3.8%	0%	0%	0%	0%
FRESH TOMA	1,4%	0%	0%	0%	95.8%	0%	1,4%	0%	0%	1.4%	0%	0%	0%	0%	0%
ROTTEN APPL	5.1%	0%	0%	6.8%	1.7%	72.9%	0%	0%	13.6%	0%	0%	0%	0%	0%	096
ROTTEN BAN	1.8%	0%	0%	0%	0%	5.4%	85.7%	0%	7.1%	0%	0%	0%	0%	0%	0%
ROTTEN MAN	0%	0%	1.4%	1.4%	0%	0%	0%	94.4%	2.8%	0%	0%	0%	0%	0%	0%
ROTTEN ORAI	0%	0%	0%	11.9%	2.4%	4.8%	0%	0%	81.0%	0%	0%	0%	0%	0%	0%
ROTTEN TOM	0%	0%	0%	0%	4.4%	2.2%	0%	0%	2.2%	91.1%	0%	0%	0%	0%	0%
UNRIPE APPL	0%	5.3%	0%	1.3%	0%	0%	6.7%	0%	0%	0%	68%	10.7%	0%	8%	096
UNRIPE BANA	0%	2.9%	0%	0%	0%	0%	2.9%	0%	1.5%	0%	26.5%	58.8%	1.5%	5.9%	0%
UNRIPE MAN	0%	2.2%	2.2%	096	0%	0%	0%	0%	0%	0%	0%	0%	95.7%	0%	0%
UNRIPE ORAN	0%	6.9%	0%	1.7%	0%	1.7%	3.4%	3.4%	0%	0%	27.6%	8.6%	0%	46.6%	0%
UNRIPE TOMA	0%	0%	0%	0%	0%	0%	1.5%	0%	3.0%	0%	0%	0%	0%	0%	95.5%
F1 SCORE	0.90	0.88	0.94	0.76	0.94	0.77	0.82	0.94	0.68	0.92	0.63	0.66	0.97	0.57	0.98

Figura 4: matriz de confusão do modelo treinado.

Observa-se que as frutas e vegetais foram classificados com alta precisão em seus estágios fresh e rotten. Já no estado unripe, o modelo acabou retornando uma precisão mais baixa se comparada ao todo, mas mesmo assim ainda gerando resultados bem sólidos.

6.4. DISCUSSÃO DOS RESULTADOS

O desempenho geral do modelo treinado e quantizado foi considerado satisfatório para aplicações embarcadas, como no caso desse projeto na Raspberry Zero Pi 2W. A versão final int8 apresenta um ótimo custo-beneficio entre precisão e eficiência. Sobre isso, algumas observações podem ser realizadas:

• O tempo médio de inferência (12 ms), que é incrivelmente baixo, permite operações em tempo real no Raspberry Pi Zero 2W.

- A acurácia ponderada de 82.5% se torna aceitável, considerando as restrições do dataset e as variações de iluminação e textura.
- A AUC = 0.98 indica excelente capacidade discriminativa global.

Outra discussão cabível de se abordar são os possíveis fatores que impactaram no desempenho do modelo treinado, que estão relacionados às imagens coletadas para o dataset. Alguns possíveis fatores são a escolha de imagens com iluminação muito distintas, a variação de frutas da mesma espécie no mesmo rótulo do dataset e o fundo e enquadramento das fotos utilizadas. Todos esses fatores podem ter influenciado no erro e na confusão da classificação do modelo sobre as frutas.

Podemos assim concluir que mesmo com limitações de hardware, o sistema demonstrou ser capaz de executar classificações rápidas e confiáveis. A arquitetura MobileNetV2 quantizada provou-se adequada para Edge AI de baixo custo, abrindo caminho para aplicações reais em agricultura inteligente, automação e monitoramento de qualidade alimentar.

7. CONCLUSÃO

7.1. CONCLUSÃO GERAL

Depreende-se, portanto, que o projeto demonstrou ser viável a implementação de um sistema inteligente de classificação de frutas e vegetais com boa precisão, atingindo 82,5% de acurácia, por meio de modelos leves de aprendizado de máquina embarcados em dispositivos de baixo custo, como o Raspberry Pi Zero.

Além disso, a arquitetura MobileNetV2, após processo de quantização, apresentou desempenho satisfatório, conciliando eficiência computacional com acurácia adequada para aplicações em tempo real, mesmo em ambientes com recursos limitados.

Dessa forma, a solução proposta contribui significativamente para a modernização da cadeia produtiva agrícola, promovendo maior padronização, redução de desperdícios e viabilidade de automação em processos de triagem e controle de qualidade de alimentos.

7.2. DIFICULDADES ENCONTRADAS

Durante o desenvolvimento do projeto, a principal dificuldade enfrentada esteve relacionada à etapa de treinamento do modelo, especialmente na classificação de frutas no estágio unripe. Inicialmente, o modelo apresentava baixa precisão para essa classe, o que comprometia a confiabilidade da inferência. Para mitigar esse problema, foi aplicada a técnica de data augmentation por meio da plataforma Roboflow, contribuindo para melhorar a generalização e o desempenho do modelo.

Por outro lado, a montagem do código e a estruturação do sistema ocorreram de forma fluida, sem grandes obstáculos. A arquitetura modular e o uso de ferramentas como TensorFlow Lite facilitaram a implementação e a integração dos componentes.

No entanto, durante a construção do dataset, observou-se uma limitação na disponibilidade de imagens públicas com variedade suficiente para algumas frutas, especialmente em diferentes estágios de maturação. Essa escassez exigiu complementação manual com imagens capturadas pela equipe e buscadas na web, o que demandou tempo adicional e atenção à curadoria e à qualidade dos dados.

7.3. MELHORIAS FUTURAS

Apesar dos resultados satisfatórios obtidos, é necessário que melhorias futuras sejam realizadas para que o sistema tenha cada vez mais capacidade de classificar frutas e vegetais de diversas espécies com maior precisão. Nesse sentido, é fundamental expandir o conjunto de dados com imagens mais variadas e bem rotuladas, especialmente para frutas da classe "unripe", que apresentaram maior taxa de erro na classificação.

Outra possível melhoria a ser implementada para melhorar o nível de precisão das frutas e qualidades seria trocar o modelo de classificação por um modelo mais robusto de detecção. Apesar desse tipo de modelo deixar a inferência um pouco mais demorada, a precisão em ambientes reais se tornaria um pouco mais relevante.

Ademais, recomenda-se a implementação de técnicas de segmentação para melhorar a detecção em imagens com múltiplos objetos. Essa abordagem pode aumentar significativamente o desempenho e a confiabilidade do sistema em cenários mais complexos.

Por fim, é importante aprimorar a interface do sistema, tornando-a mais interativa e responsiva, com dashboards informativos, gráficos de maturação e funcionalidades de exportação de dados para plataformas de gestão agrícola. Essas melhorias são essenciais para que o sistema de classificação evolua continuamente e contribua de forma efetiva com as necessidades reais do setor agrícola.

8. REFERÊNCIAS

FAO — Food and Agriculture Organization of the United Nations. *The State of Food and Agriculture: Food Loss and Waste*. Roma: FAO, 2019. Acesso em: 17 jun. 2025.

HOWARD, A. et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861, 2017. Acesso em: 17 jun. 2025.

FLASK Documentation. *Flask Web Framework*. Disponível em: https://flask.palletsprojects.com/. Acesso em: 17 jun. 2025.

ABADI, M. *et al.* TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Google, 2016. Disponível em: https://www.tensorflow.org/. Acesso em: 17 jun. 2025.

BRADBURY, J. et al. OpenCV Documentation. Open Source Computer Vision Library, 2024. Disponível em: https://opencv.org/. Acesso em: 17 jun. 2025.

EDGE IMPULSE. *Edge Impulse Platform – Model Training and Deployment for Edge AI*. Disponível em: https://www.edgeimpulse.com/. Acesso em: 17 jun. 2025.

KAGGLE. *Fruits-360 Dataset*. Disponível em: https://www.kaggle.com/datasets/moltean/fruits. Acesso em: 17 jun. 2025.

PILLOW Developers. *Pillow (PIL Fork) Documentation*. Disponível em: https://python-pillow.org/. Acesso em: 17 jun. 2025.

RASPBERRY PI FOUNDATION. *Raspberry Pi Zero 2W — Technical Specifications*. Disponível em: https://www.raspberrypi.com/. Acesso em: 17 jun. 2025.

ROBOFLOW. *Custom Ripeness Datasets*. Disponível em: https://universe.roboflow.com/pencil-versus-scissors-teste/fruits-verification-thwfx. Acesso em: 17 jun. 2025.