
11

 IESTI05 – Edge AI 
Machine Learning

System Engineering

22. SLM for IoT Control



2

SLMs for IoT Control



3

Hardware



4

Monitor.py

• collect_data()

• led_status()

• control_leds(red, yellow, green)

• GPIO Initialization

monitor.py

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/monitor.py


5

SLM Basic Analysis

slm_basic_analysis.py

• The button, not pressed, 
shows a normal operation 

• The button, when pressed, 
shows an emergency 

• If the temperature is over 
20°C, it means a warning 
situation 

• The red LED, when on, 
indicates a 
problem/emergency.

• The yellow LED indicates a 
warning situation when on.

• The green LED is on, 
indicating the system is OK.

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/slm_basic_analysis.py


6

SLMs and IoT Control 
Projects

SLM_IoT.ipynb

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/SLM_IoT.ipynb


7

Acting on Output (Actuators)

slm_basic_act_leds.py

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/slm_basic_act_leds.py


8

Prompting Engineering

slm_act_leds.py

Key Changes in the code:

● Added JSON import

● Changed to JSON format - The prompt now asks for a structured 

JSON response:

● {"red_led": true, "yellow_led": false, "green_led": false}

● Updated parser - Now parses JSON instead of searching for text 

strings. Includes error handling and fallback to safe state (all LEDs 

off) if parsing fails.

Why JSON is Better:

● More reliable: No ambiguity about which LEDs to activate

● Structured: Clear true/false values instead of parsing text

● Error-resistant: The parser handles markdown code blocks (some 

models wrap JSON in ```) and provides safe fallback

● Flexible: Easy to add more fields later if needed

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/slm_act_leds.py


9



10

Autonomous system:

• Continuously monitored 
sensors

• Automatically decided LED 
states based on pre-defined 
rules

• No user interaction



11

Interactions with Natural Language Commands

Interactive System:

• Waits for user commands
• Accepts natural language queries and 

commands
• Provides conversational responses
• Executes actions based on user 

requests
• Displays comprehensive system status

slm_act_leds_interactive.py

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/slm_act_leds_interactive.py


12



13

Prompt Optimization and Efficiency
1. System message: It defines the assistant’s behavior and should be 

sent once at initialization, not at PROMPT
2. Prompt: Should be drastically shortened
3. API: Ollama.Chat Instead of Ollama.Generate
4. Model: Pre-loading

slm_act_leds_interactive_optimized.py

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/slm_act_leds_interactive_optimized.py


14

• No more parsing errors - Guaranteed valid JSON
• Cleaner output - No markdown code blocks
• Type safety - IDE autocomplete and type checking
• Faster generation - Constrained decoding is more efficient
• Better validation - Pydantic catches invalid values

Using Pydantic

Using Pydantic is a robust way to improve the reliability, efficiency, and 
maintainability of our system, mainly since we rely on the LLM to output 
precise JSON

slm_act_leds_interactive_pydantic.py

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/slm_act_leds_interactive_pydantic.py


15

Adding Data Logging

data_logger.py

slm_act_leds_with_logging.py
(Not optimized)

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/data_logger.py
https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/SLMs_for_IoT_CONTROL/slm_act_leds_with_logging.py


16



17

Querying the Datalog



18



19

Questions?


