IESTIO5 — Edge Al

Machine Learning
System Engineering

== e T e T T e T

20a. SLMs: Optimization Techniques
- Agents

UNIFEI

Marcelo Rovai
Professor Honoris Causa

Issue

import ollama

response = ollama.generate(
model="11lama3.2:3b",
prompt="Multiply 123456 by 123456"

)

print (response| 'response’'])

® o ~ marcelo_rovai — mjrovai@raspi-5: ~/Documents/Ollamajagents/scripts — ssh mjrovai@192.168.4.209 — 83x5

python slm-limitation-tst.py

WRONG!!!!! The correct answer [123,456 x 123,456 = 15,241,383,936

Agent

s

User

1

User Request

G
5

How wmuch is
123456 multiplied
by 1234567

\

J

Think & Plan

I need to select

a tool!
- A caleulator!

Select a tool

Act using the Tool

Function Calling versus Agent

The agent receives a user request, thinks and
plans, then decides to use a tool (such as a

I need to select
a tool!

How wmuch is
123456 wultiplied

by 1234567 - A caleulator!
calculator) to perform the required action.
2 :
Function Calling enables this process — but $; ' — &
the agent is the entity that selects and invokes — —=— - —
the function (i.e., the tool), making decisions 1 2 3 4

based on the user’s request. User Request Think & Plan Select a tool Actusing the Tool

The “agent” is the decision-maker who chooses which function/tool to use.

* The “tool” is the specific function that executes the required action.
* Function calling is how the agent uses the tool.

Function Calling and Agents:
Calculator

50-Ollama_Fuction_Calling Agent Calc.ipynb

o
_
jupyter
"

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/Advancing_EdgeAI/50-Ollama_Fuction_Calling_Agent_Calc.ipynb

Function
Calling

Define the Tool (Function Schema)

multiply_tool = {
"type": "function",
"function": {
"name": "multiply_numbers",
"description": "Multiply two numbers together",
"parameters": {
"type": "object",
"required": ["a", "b"],
"properties": {
"a": {"type": "number", "description": "First number"},
"b": {"type": "number", "description": "Second number"}

Implement the Function (with type conversion)

def multiply_numbers(a, b):
Convert to int or float as needed
a = float(a)
b = float(b)
return {"result": a x b}

F un Ct | on Orchestrate with Ollama (Synchronous Version)

. def answer_query(QUERY):
Ca | | I ng # User asks to multiply 123456 x 123456
response = ollama.chat(
‘1lama3.2:3B',
messages=[{"role": "user", "content": QUERY}],
tools=[multiply_tool]

)

Check if the model wants to call the tool
if response.message.tool_calls:
for tool in response.message.tool_calls:
if tool.function.name == "multiply_numbers":
Ensure arguments are passed as numbers
result = multiply_numbers (**tool.function.arguments)

S

\)eS‘\O(\ print(f"Result: {result['result']:,.2f}")
\(\e(Q a‘_\O“ else:
\«0‘\0 p\\c print(f"It is not a Multiplication")
‘\0‘_ \NO(ec:\{\(' «\
0] S
0\\3(\&‘(\3 QUERY = "What is 123456 x 1234567"
X

answer_query (QUERY)
Result: 15,241,383,936.00

def process_query(user_input):

[]
SO | u t I O n classification = ask_ollama_for_classification(user_input)
print("0llama classification:", classification)
if classification.get("type") == "multiplication":
- ~ numbers = classification.get("numbers", [0, 0])
User Input if len(numbers) >= 2:
§ y return multiply(numbers[@], numbers[1])
else:
Y return " I couldn't extract the numbers properly."
2 3\
////////’//* else:
process_query() return ask_ollama(user_input)
. J
. def ask_ollama_for_classification(user_input):
= 5 promp.t = flll!ll
ask_ollama_for_classification() Analyze the following query and determine if it's
Uses SLM to classify query asking for multiplication or if it's a general question.

Query: "{user_input}"

If it's asking for multiplication, respond with a JSON object in this format:
{{"type": "multiplication", "numbers": [numberl, number2]}}

Yes No If it's a general question, respond with a JSON object in this format:

{{"type": "general_question"}}

multiplication?

Respond ONLY with the JSON object, nothing else.

print("Sending classification request to Ollama")

4 4

N

e try:

muitiply() ask_ollama() response = ollama.generate(model=MODEL, prompt=prompt)
response_text = response["response"].strip()

print(f"Classification response: {response_text}")

Find the JSON part in the response

start = response_text.find('{")
Response to User end = response_text.rfind('}') + 1
if start >= 0 and end > start:
return json.loads(response_text[start:end])

print(f"Failed to parse JSON: {response_text}")
except Exception as e:

1 print(f"Error connecting to Ollama: {str(e)}")
fu nc Calllng agent°pv return {"type": "general_question"}

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/Advancing_EdgeAI/func_calling_agent.py

Solution

User Input

\
-) /

process_query()

A

[ask_o||ama_for_c|assiﬁcation(j

Uses SLM to classify query

Yes No

multiplication?

y 4

Y

nultiply() ‘ [ask_ollama() }

*o[Response to User Jc—

def

def

def

def

process_query(user_input):
classification = ask_ollama_for_classification(user_input)
print("0llama classification:", classification)
if classification.get("type") == "multiplication":
numbers = classification.get("numbers", [0, @])
if len(numbers) >= 2:
return multiply(numbers[@], numbers[1])
else:
return " I couldn't extract the numbers properly."
else:
return ask_ollama(user_input)

multiply(a, b):
result = a x b
return f"The product of {a} and {b} is {result}."

ask_ollama(query):

print("Sending query to Ollama")

try:
response = ollama.generate(mode1l=MODEL, prompt=query)
return response["response"].strip()

except Exception as e:
return f"Error connecting to Ollama: {str(e)}"

process_query(user_input):
classification = ask_ollama_for_classification(user_input)
print("0llama classification:", classification)
if classification.get("type") == "multiplication":
numbers = classification.get("numbers", [0, 0])
if len(numbers) >= 2:
return multiply(numbers[@], numbers[1])
else:
return " I couldn't extract the numbers properly."
else:
return ask_ollama(user_input)

User Input

. [®) marcelo_rovai — mjrovai@raspi-5: ~/D ents/Oll Jagents/scripts — ssh mjrovai@192.168.4.209 — 83x14
python 2-simple agent.py

4 3
process_query()

_) You: Multiply 123456 by 123456
Sending classification request to Ollama
Classification response: ({

7 N\ "type": "multiplication",

ask_ollama_for_classification() "numbers": [123456, 123456)

Uses SLM to classify query }
_ y, Ollama classificationg {('type': 'multiplication', 'numbers': [123456, 123456))

Agent: The product of 123456 and 123456 is 15241383936.

It is correct (1 123,456 x 123,456 = 15,241,383,936

3 ® (&) marcelo_rovai — mjrovai@raspi-5: ~/Documents/Ollamajagents/scripts — ssh mjrovai@®192.168.4.209 — 83x12

multinlv(
IRESEN ask_ollama() You: What is the capital of Brazil?
Sending classification request to Ollama

Classification response: {
"type": "general question"

}

Ollama classification: uestion')
Sending query to Ollamé

Response to User

Agent: The capital of Brazil is Brasilia.

You:

Agents powered by Small Language Models (SLMs) are autonomous or semi-autonomous software
components that leverage compact, efficient language models to perform specialized tasks, interact with
users, or orchestrate workflows. These agents are increasingly favored for their lower computational
requirements, faster response times, and suitability for deployment in resource-constrained or
privacy-sensitive environments where Large Language Models (LLMs) are impractical.

* Efficiency & Cost-Effectiveness: SLMs require less memory and compute, making agents cheaper to
run and easier to deploy at scale or on edge devices.

» Specialization: SLMs can be fine-tuned for specific domains, allowing agents to excel at focused tasks
(e.g., compliance, finance, healthcare) without carrying the overhead of generalist LLMs.

* Autonomy & Collaboration: Multiple SLM agents can collaborate, each handling a segment of a
workflow, sharing results, and adapting to context for complex, modular automation.

* Adaptability: With techniques like retrieval-augmented generation (RAG) and chain-of-thought
prompting, SLM agents can plan, reason, and refine their actions in dynamic environments.

Next page, recommended Packages and Frameworks:

Framework
/ Package

smolagents

CrewAl

Agno

OpenAl
Swarm

Autogen

Arcee
Orchestra

LangGraph

Description

Lightweight Python library for building
agentic systems with SLMs or LLMs.

Agent-based framework for multi-
agent orchestration.

Python framework for converting
LLMs/SLMs into agents; supports
multiple providers.

Open-source multi-agent
orchestration framework.

Open-source framework for multi-
agent collaboration and LLM/SLM
workflows.

Commercial end-to-end agentic Al
platform built on SLMs.

Graph-based agent orchestration
framework from LangChain for
complex, stateful, and multi-agent
workflows.

SLM
Support

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Key Features

Simple AP, tool integration, supports Hugging Face and LiteLLM models, easy
function/tool wrapping.

Multi-agent workflows, Ul tools, monitoring, extensibility, and integrates with
many LLM/SLM providers.

Built-in agent Ul, AWS/cloud deployment, database/vector store integration,
multi-agent orchestration.

Lightweight, agent handoff architecture, privacy-focused, built-in
retrieval/memory.

Cross-language support, local/remote agents, async messaging, scalable,
pluggable components.

Intelligent model routing, security, compliance, on-prem deployment, fine-
tuned SLMs for automation.

Cyclic graph workflows, stateful memory (short/long-term), human-in-the-
loop, parallelization, subgraphs, reflection/self-correction, visual IDE
(LangGraph Studio), persistence, streaming, robust debugging and
deployment tools135[7].

12

File Edit Selection Find View Goto Tools Project Preferences Help
4P RAG-1-Create-PersistentVector-Database.py % | RAG-2-Query-the-Persistent-RAG-Databasepy * agent_calcpy mjrovai@raspi-5:
from smolagents import CodeAgent, LiteLLMModel, tool New run

python agent_calc.py

Step 1: Define your tool function with a proper docstring How is 123456 multiplied by 123456?

d@f rulrwu1v calc(a: float, b: float) -> float: LiteLLMModel - ollama/llama3.2:3B
"""Returns the product of two numbers

Step 1

— Executing parsed code:
result multiply calc(a=123456, b=123456)

L

Args:
a: The first number to multiply.
b: The second number to multiply.

Out: 15241383936
Returns:
float: The product of a and b. . Step 2
nn — Executing parsed code:
returna * b print("The result of multiplying 123456 by 123456 is:", result)

Step 2: Create the agenf Execution logs:
agent = CodeAgent(The result of multiplying 123456 by 123456 is: 15241383936
tools= [multlply calc]
model=LitelLLMModel(
model id=" ollama/llama3 2:3B"
apl_base:”http.//localhost.11434”,

api_key="ollama", g .
— Executing parsed code:
temperature=0.3,

num_ctx=4096 final_answer(result)

Out: None

)f)
executor_type="1local", Out - Final answer: 15241383936

max_steps=10
5241383936
m]roval@raspi-s:
Run the agent
response = agent.run("How is 123456 multiplied by 123456?")
t(response)

] Line 17, Column 27 Spaces: 4 Python

agent_calc.py

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/Advancing_EdgeAI/agent_calc.py

File Edit Tabs Help

New run
what is 25 multiplied by 172
LiteLLMModel - ollama/llama3

— Executing parsed code:

result multiply_calc(a=25, b=17)
final_answer(result)

Out - Final answer: 425

Query: What is 25 multiplied by 177
Response: 425

python enhanced-agent.py

enhanced-agent calc.py

File Edit Tabs Help

New run

What is the capital of Colombia?

LiteLLMModel - ollama/llame
Step
— Executing parsed code:
capital general_knowledge_query(query
print(capital)

Execution logs:
Bogota

Out: None

Step
— Executing parsed code:
capital general_knowledge_query(query
print(capital)

Execution logs:
Bogota

Out: None

Step
— Executing parsed code:
capital general_knowledge_query(query
print(capital)

Execution logs:
Bogota

Out: None
Step
— Executing parsed code:
capital general_knowledge_query(query
final_answer (capital)

Out - Final answer: Bogota

the capital of Colombhia?
Bogota

d

"Capital of Colombia")

2

"Capital of Colombia")

3

"Capital of Colombia")

4

"Capital of Colombia")

https://github.com/Mjrovai/EdgeML-with-Raspberry-Pi/blob/main/Advancing_EdgeAI/enhanced-agent_calc.py

Questions?

®

Prof. Marcelo J. Rovai

UNIFEI

