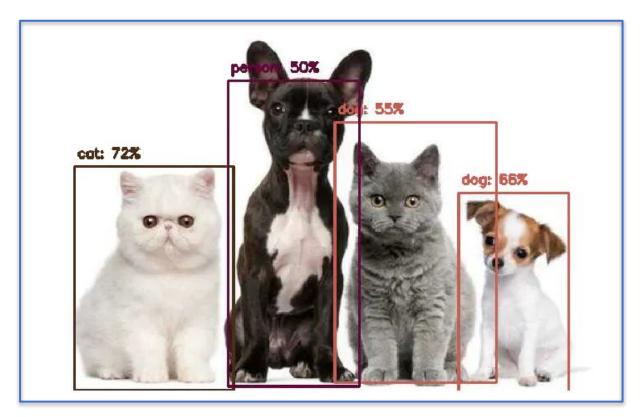
IESTI05 – Edge Al

Machine Learning
System Engineering

5. Image Classification:
Introduction to TFLite Runtime

Computer Vision Recognition Tasks

Image Classification (Multi-Class Classification)


Cat: 70%

Dog: 80%

Object Detection

Multi-Label Classification + Object Localization

Computer Vision Recognition Tasks

Instance Segmentation

Each pixel in an image IS CLASSIFIED into a predefined category.

Pose Estimation

Key points (or landmarks) on the object, such as joints on a human body are detect

Image Classification

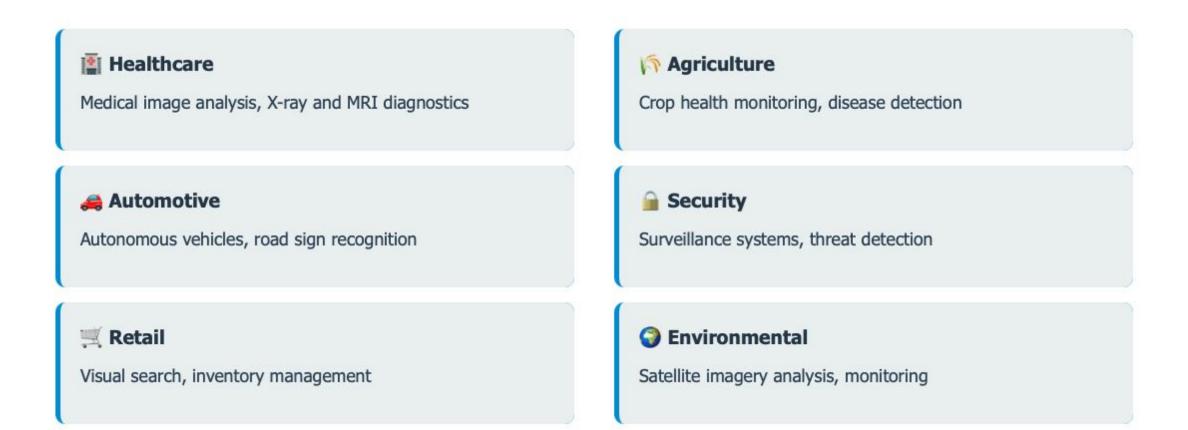
What is Image Classification?

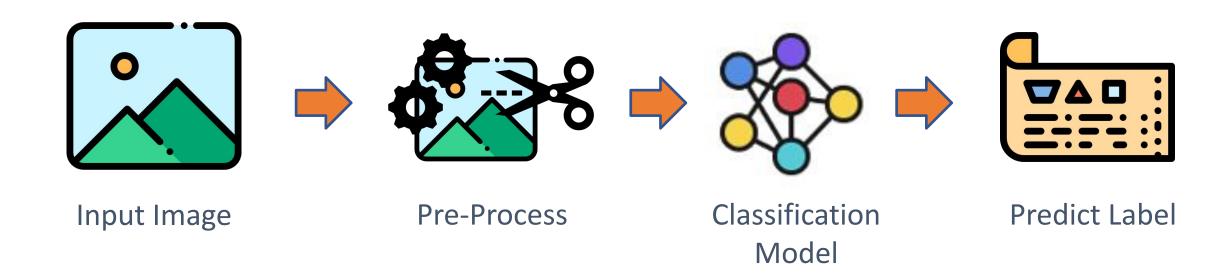
Definition

Image classification is a fundamental task in computer vision that involves categorizing an image into one of several predefined classes.

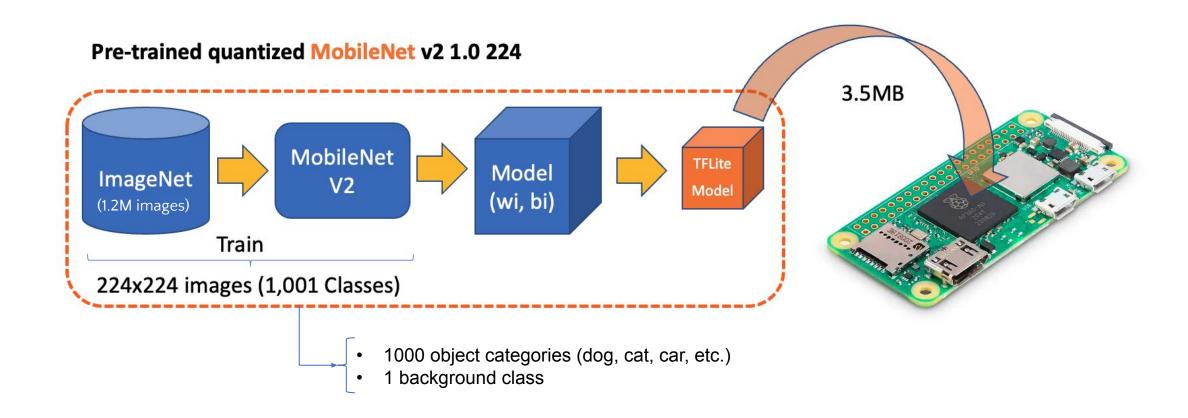
Key Characteristics

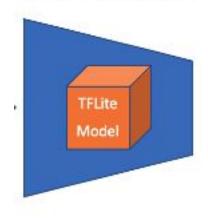
- Assigns a single label to the entire image
- Based on visual content analysis
- Uses machine learning algorithms
- Mimics human visual perception



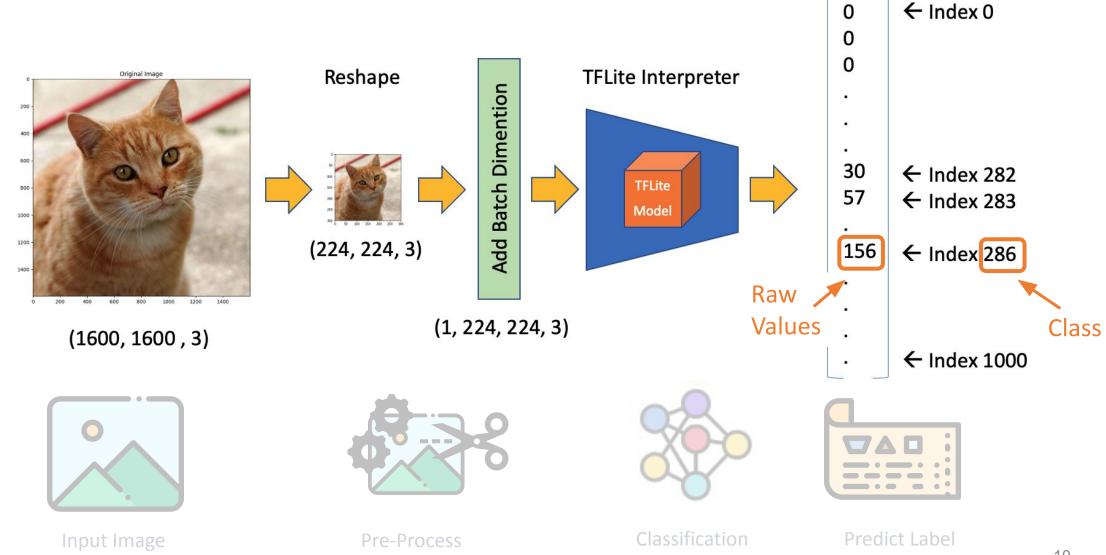


Dog: 80%


Real-World Applications


Image Classification: Inference Pipeline

The MobileNet V2 model

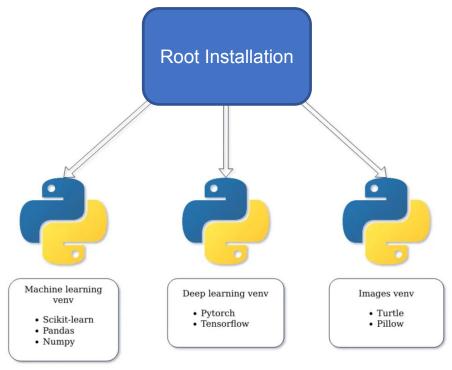


TFLite Interpreter


```
input_details
[{'name': 'input',
                                                               Input Image
  'index': 171.
   shape': array([ 1, 224, 224, 3], dtype=int32),
                                                               Shape Signature
   shape signature': array([ 1, 224, 224, 3], dtype=int32),
   dtype': numpy.uint8,
                                                               Pixel data type
   quantization': (0.0078125, 128),
   quantization_parameters': {'scales': array([0.0078125], dtype=float32),
   'zero_points': array([128], dtype=int32),
   'quantized_dimension': 0},
                                                               Quantization
  'sparsity parameters': {}}]
                                                               Parameters
output_details
[{'name': 'output',
  'index': 172,
  'shape': array([ 1, 1001], dtype=int32), ← Output model
  'shape signature': array([ 1, 1001], dtype=int32),
  'dtype': numpy.uint8,
  'quantization': (0.09889253973960876, 58),
  'quantization_parameters': {'scales': array([0.09889254], dtype=float32),
   'zero points': arrav([58]. dtype=int32),
   'quantized_dimension': 0},
                                                Quant Dim 0: One set of parameters
   sparsity parameters': {}}]
                                                for the entire output tensor
```

Making inferences with MobileNet V2

TFLite Runtime


Setting up a Virtual Environment

Activate the environment:

source ~/tflite_env/bin/activate

To exit the virtual environment, use:

deactivate

TensorFlow Lite Setup

What is TensorFlow Lite?

A lightweight runtime for running machine learning models on mobile and embedded devices, optimized for inference with minimal latency.

We'll use the <u>TensorFlow Lite runtime</u> for Raspberry Pi, a simplified library for running machine learning models on mobile and embedded devices, without including all TensorFlow packages.

```
pip install tflite-runtime
tflite_runtime-2.14.0-cp311-cp311-manylinux_2_34_aarch64.whl
```

sudo reboot

Verify installation:

```
pip list | grep -E "(tflite-runtime)'
tflite-runtime 2.14.0.
```

Creating a working directory & get the model

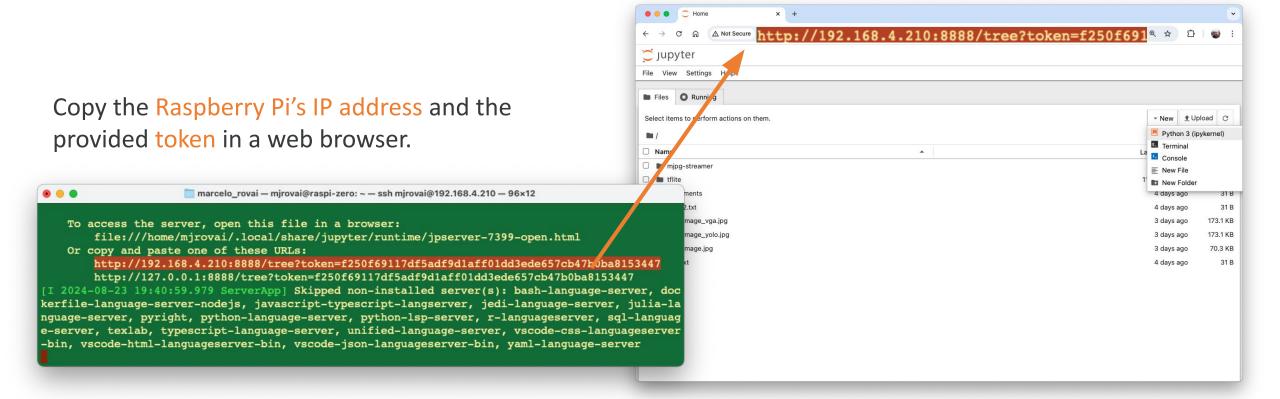
```
Documents/

TFLITE/

IMG_CLASS/

models/
mobilenet_v2.tflite
labels.txt
images/
test_image.jpeg
```

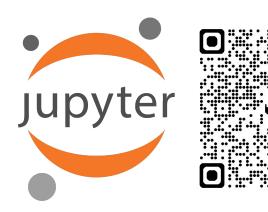
Go to the models/ folder and get the Model and labels


```
wget
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08
/mobilenet_v2_1.0_224_quant.tgz
tar xzf mobilenet_v2_1.0_224_quant.tgz
```

```
https://raw.githubusercontent.com/Mjrovai/EdgeML-with-Raspberry-Pi/refs/heads
/main/IMG CLASS/models/labels.txt
```

Running up Jupyter Notebook

jupyter notebook --ip=[YOUR IP ADDREES] --no-browser


Verifying the Setup

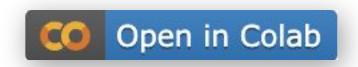

```
import tflite_runtime.interpreter as tflite
import numpy as np
from PIL import Image
print("NumPy:", np.__version__)
print("Pillow:", Image.___version___)
# Try to create a TFLite Interpreter
model_path = "./models/mobilenet_v2_1.0_224_quant.tflite"
interpreter = tflite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
print("TFLite Interpreter created successfully!")
```

Raspberry Pi Inference:

10 Image Classification.ipynb

Making inferences: Static Images and Camera

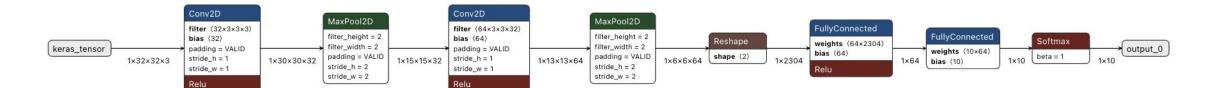
[PREDICTION]	[Prob]
tiger cat	: 37%
Egyptian cat	: 27%
tabby	: 16%
lynx	: 10%
carton	: 2%


[PREDICTION]	[Prob]
coffee mug	: 99%
cup	: 0%
whiskey jug	: 0%
teapot	: 0%
water jug	: 0%

Optional

Training:

CNN model to classify the CIFAR-10 dataset


Raspberry Pi Inference:

20 Cifar 10 Image Classification.ipynb

Cifar-10 - Inference

[PREDICTION]	[Prob]
--------------	--------

dog	:	45.0%
cat	:	28.7%
bird	:	9.3%
horse	:	5.5%
truck	:	4.2%

Inference time: 2.8ms

[PREDICTION]	[Prob]
cat	: 56.2%
dog	: 24.9%
frog	: 14.3%
deer	: 2.2%
bird	: 1.9%

Inference time: 2.8ms

[PREDICTION]	[Prob]
ship	: 88.7%
airplane	: 9.2%
deer	: 1.8%
bird	: 0.2%
automobile	: 0.0%

Inference time: 2.8ms

[PREDICTION]	[Prob]
automobile	: 99.7%
truck	: 0.3%
airplane	: 0.0%
ship	: 0.0%
bird	: 0.0%

Inference time: 2.8ms

Questions?

Prof. Marcelo J. Rovai

rovai@unifei.edu.br

